Summary: | Forage plants underpin the livestock industry. Selective breeding, including polyploidization, where genome size is increased by whole genome duplication, changes the productivity and stress tolerance of new varieties. We conducted a growth chamber experiment to investigate the likely responses of <i>Lolium perenne</i> L. to drought, testing four diploid and four tetraploid varieties. We simulated projected spring and summer temperatures for the South-West of England in 2080, applying three projected rainfall scenarios, which varied in drought severity. Drought caused a reduction in productivity, but there was substantial variation between varieties (up to 82%), with the optimal variety changing depending on drought severity. Across three harvests, productivity declined by 43% and 27% (dry biomass) for the severe and likely drought scenarios, respectively. In the final harvest, tetraploids exhibited a greater biomass under severe drought, whereas diploids had a greater biomass under the current rainfall and likely drought scenarios. Longer stomata were observed in tetraploids; however, stomatal conductance was not significantly different between ploidy levels. Trait selection will be important for future drought adaptation. Local climate projections will need to be consulted when selecting <i>L. perenne</i> varieties to tolerate the spatially variable reductions in future rainfall.
|