The <it>Arabidopsis thaliana-Alternaria brassicicola</it> pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi

<p>Abstract</p> <p>Background</p> <p>Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying thi...

Full description

Bibliographic Details
Main Authors: Pochon Stephanie, Terrasson Emmanuel, Guillemette Thomas, Iacomi-Vasilescu Beatrice, Georgeault Sonia, Juchaux Marjorie, Berruyer Romain, Debeaujon Isabelle, Simoneau Philippe, Campion Claire
Format: Article
Language:English
Published: BMC 2012-05-01
Series:Plant Methods
Subjects:
Online Access:http://www.plantmethods.com/8/1/16
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase.</p> <p>Results</p> <p>Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of <it>Arabidopsis thaliana</it> were inoculated with <it>Alternaria brassicicola</it> conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages) that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant <it>nik1Δ3</it> to transmit to <it>A. thaliana</it> seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a <it>transparent testa Arabidopsis</it> mutant (<it>tt4-1</it>) not producing any flavonoid was used as host plant. Unexpectedly, <it>tt4-1</it> seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites.</p> <p>Conclusions</p> <p>The <it>Arabidopsis thaliana-Alternaria brassicicola</it> pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis of plant-pathogen interactions during the reproductive phase. We demonstrated that it provides an excellent system for investigating the impact of different fungal or plant mutations on the seed transmission process and therefore paves the way towards future high-throughput screening of both <it>Arabidopsis</it> and fungal mutant.</p>
ISSN:1746-4811