Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries

Abstract Exploiting thin Li metal anode is essential for high-energy-density battery, but is severely plagued by the poor processability of Li, as well as the uncontrollable Li plating/stripping behaviors and Li/electrolyte interface. Herein, a thickness/capacity-adjustable thin alloy-type Li/LiZn@C...

Full description

Bibliographic Details
Main Authors: Jiaqi Cao, Yuansheng Shi, Aosong Gao, Guangyuan Du, Muhtar Dilxat, Yongfei Zhang, Mohang Cai, Guoyu Qian, Xueyi Lu, Fangyan Xie, Yang Sun, Xia Lu
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-45613-4
_version_ 1797273991581270016
author Jiaqi Cao
Yuansheng Shi
Aosong Gao
Guangyuan Du
Muhtar Dilxat
Yongfei Zhang
Mohang Cai
Guoyu Qian
Xueyi Lu
Fangyan Xie
Yang Sun
Xia Lu
author_facet Jiaqi Cao
Yuansheng Shi
Aosong Gao
Guangyuan Du
Muhtar Dilxat
Yongfei Zhang
Mohang Cai
Guoyu Qian
Xueyi Lu
Fangyan Xie
Yang Sun
Xia Lu
author_sort Jiaqi Cao
collection DOAJ
description Abstract Exploiting thin Li metal anode is essential for high-energy-density battery, but is severely plagued by the poor processability of Li, as well as the uncontrollable Li plating/stripping behaviors and Li/electrolyte interface. Herein, a thickness/capacity-adjustable thin alloy-type Li/LiZn@Cu anode is fabricated for high-energy-density Li metal batteries. The as-formed lithophilic LiZn alloy in Li/LiZn@Cu anode can effectively regulate Li plating/stripping and stabilize the Li/electrolyte interface to deliver the hierarchical Li electrochemistry. Upon charging, the Li/LiZn@Cu anode firstly acts as Li source for homogeneous Li extraction. At the end of charging, the de-alloy of LiZn nanostructures further supplements the Li extraction, actually playing the Li compensation role in battery cycling. While upon discharging, the LiZn alloy forms just at the beginning, thereby regulating the following Li homogeneous deposition. The reversibility of such an interesting process is undoubtedly verified from the electrochemistry and in-situ XRD characterization. This work sheds light on the facile fabrication of practical Li metal anodes and useful Li compensation materials for high-energy-density Li metal batteries.
first_indexed 2024-03-07T14:52:03Z
format Article
id doaj.art-ed6e1d3c2b6e4e7da2fb0912d9dc901d
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-07T14:52:03Z
publishDate 2024-02-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-ed6e1d3c2b6e4e7da2fb0912d9dc901d2024-03-05T19:39:58ZengNature PortfolioNature Communications2041-17232024-02-0115111310.1038/s41467-024-45613-4Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteriesJiaqi Cao0Yuansheng Shi1Aosong Gao2Guangyuan Du3Muhtar Dilxat4Yongfei Zhang5Mohang Cai6Guoyu Qian7Xueyi Lu8Fangyan Xie9Yang Sun10Xia Lu11School of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversityInstrumental Analysis & Research Center, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversityInstrumental Analysis & Research Center, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversitySchool of Materials, Sun Yat-sen UniversityAbstract Exploiting thin Li metal anode is essential for high-energy-density battery, but is severely plagued by the poor processability of Li, as well as the uncontrollable Li plating/stripping behaviors and Li/electrolyte interface. Herein, a thickness/capacity-adjustable thin alloy-type Li/LiZn@Cu anode is fabricated for high-energy-density Li metal batteries. The as-formed lithophilic LiZn alloy in Li/LiZn@Cu anode can effectively regulate Li plating/stripping and stabilize the Li/electrolyte interface to deliver the hierarchical Li electrochemistry. Upon charging, the Li/LiZn@Cu anode firstly acts as Li source for homogeneous Li extraction. At the end of charging, the de-alloy of LiZn nanostructures further supplements the Li extraction, actually playing the Li compensation role in battery cycling. While upon discharging, the LiZn alloy forms just at the beginning, thereby regulating the following Li homogeneous deposition. The reversibility of such an interesting process is undoubtedly verified from the electrochemistry and in-situ XRD characterization. This work sheds light on the facile fabrication of practical Li metal anodes and useful Li compensation materials for high-energy-density Li metal batteries.https://doi.org/10.1038/s41467-024-45613-4
spellingShingle Jiaqi Cao
Yuansheng Shi
Aosong Gao
Guangyuan Du
Muhtar Dilxat
Yongfei Zhang
Mohang Cai
Guoyu Qian
Xueyi Lu
Fangyan Xie
Yang Sun
Xia Lu
Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
Nature Communications
title Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
title_full Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
title_fullStr Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
title_full_unstemmed Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
title_short Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries
title_sort hierarchical li electrochemistry using alloy type anode for high energy density li metal batteries
url https://doi.org/10.1038/s41467-024-45613-4
work_keys_str_mv AT jiaqicao hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT yuanshengshi hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT aosonggao hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT guangyuandu hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT muhtardilxat hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT yongfeizhang hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT mohangcai hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT guoyuqian hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT xueyilu hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT fangyanxie hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT yangsun hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries
AT xialu hierarchicallielectrochemistryusingalloytypeanodeforhighenergydensitylimetalbatteries