Modelo dinâmico para um processo auto-regressivo de primeira ordem, aplicando metodologia Bayesiana

Neste artigo apresentamos uma ramificação do processo auto-regressivo de primeira ordem com coeficiente aleatório e variante no tempo, assumindo uma estrutura de dependência dos coeficientes aleatórios, que leva a um modelo de filtro de Kalman adaptado. Embora o modelo de filtro de Kalman considerad...

Full description

Bibliographic Details
Main Authors: Leonilce Mena, Marinho Gomes de Andrade Filho
Format: Article
Language:English
Published: Universidade Estadual de Maringá 2002-04-01
Series:Acta Scientiarum: Technology
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553
Description
Summary:Neste artigo apresentamos uma ramificação do processo auto-regressivo de primeira ordem com coeficiente aleatório e variante no tempo, assumindo uma estrutura de dependência dos coeficientes aleatórios, que leva a um modelo de filtro de Kalman adaptado. Embora o modelo de filtro de Kalman considerado seja uma generalização do filtro de Kalman Ordinário, sua análise produz dificuldades técnicas, porque não é possível encontrar uma forma fechada para o filtro, assim aplicamos simulação de Monte Carlo em Cadeia de Markov utilizando os algoritmos Amostrador de Gibbs e Metropolis-Hasting para fazer inferência quanto aos parâmetros do modelo e também fazer previsões de dados de uma série temporal de índice de preços de ações e preço do boi gordo.
ISSN:1806-2563
1807-8664