Modelo dinâmico para um processo auto-regressivo de primeira ordem, aplicando metodologia Bayesiana
Neste artigo apresentamos uma ramificação do processo auto-regressivo de primeira ordem com coeficiente aleatório e variante no tempo, assumindo uma estrutura de dependência dos coeficientes aleatórios, que leva a um modelo de filtro de Kalman adaptado. Embora o modelo de filtro de Kalman considerad...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade Estadual de Maringá
2002-04-01
|
Series: | Acta Scientiarum: Technology |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553 |
Summary: | Neste artigo apresentamos uma ramificação do processo auto-regressivo de primeira ordem com coeficiente aleatório e variante no tempo, assumindo uma estrutura de dependência dos coeficientes aleatórios, que leva a um modelo de filtro de Kalman adaptado. Embora o modelo de filtro de Kalman considerado seja uma generalização do filtro de Kalman Ordinário, sua análise produz dificuldades técnicas, porque não é possível encontrar uma forma fechada para o filtro, assim aplicamos simulação de Monte Carlo em Cadeia de Markov utilizando os algoritmos Amostrador de Gibbs e Metropolis-Hasting para fazer inferência quanto aos parâmetros do modelo e também fazer previsões de dados de uma série temporal de índice de preços de ações e preço do boi gordo. |
---|---|
ISSN: | 1806-2563 1807-8664 |