An optimal fractional-order accumulative Grey Markov model with variable parameters and its application in total energy consumption

In this paper, we propose an optimal fractional-order accumulative Grey Markov model with variable parameters (FOGMKM (1, 1)) to predict the annual total energy consumption in China and improve the accuracy of energy consumption forecasting. The new model is built upon the traditional Grey model and...

Full description

Bibliographic Details
Main Authors: Dewang Li, Meilan Qiu, Shuiping Yang, Chao Wang, Zhongliang Luo
Format: Article
Language:English
Published: AIMS Press 2023-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231349?viewType=HTML
Description
Summary:In this paper, we propose an optimal fractional-order accumulative Grey Markov model with variable parameters (FOGMKM (1, 1)) to predict the annual total energy consumption in China and improve the accuracy of energy consumption forecasting. The new model is built upon the traditional Grey model and utilized matrix perturbation theory to study the natural and response characteristics of a system when the structural parameters change slightly. The particle swarm optimization algorithm (PSO) is used to determine the number of optimal fractional order and nonlinear parameters. An experiment is conducted to validate the high prediction accuracy of the FOGMKM (1, 1) model, with mean absolute percentage error (MAPE) and root mean square error (RMSE) values of 0.51% and 1886.6, respectively, and corresponding fitting values of 0.92% and 6108.8. These results demonstrate the superior fitting performance of the FOGMKM (1, 1) model when compared to other six competitive models, including GM (1, 1), ARIMA, Linear, FAONGBM (1, 1), FGM (1, 1) and FOGM (1, 1). Our study provides a scientific basis and technical references for further research in the finance as well as energy fields and can serve well for energy market benchmark research.
ISSN:2473-6988