Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
<p>Nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><m...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-10-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/6759/2021/amt-14-6759-2021.pdf |
_version_ | 1819028796433498112 |
---|---|
author | C. M. Nussbaumer U. Parchatka I. Tadic B. Bohn D. Marno M. Martinez R. Rohloff H. Harder F. Kluge K. Pfeilsticker F. Obersteiner M. Zöger R. Doerich J. N. Crowley J. Lelieveld J. Lelieveld H. Fischer |
author_facet | C. M. Nussbaumer U. Parchatka I. Tadic B. Bohn D. Marno M. Martinez R. Rohloff H. Harder F. Kluge K. Pfeilsticker F. Obersteiner M. Zöger R. Doerich J. N. Crowley J. Lelieveld J. Lelieveld H. Fischer |
author_sort | C. M. Nussbaumer |
collection | DOAJ |
description | <p>Nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>≡</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2f82bf52594ce7ed0138de6f6b27db69"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-6759-2021-ie00001.svg" width="85pt" height="13pt" src="amt-14-6759-2021-ie00001.png"/></svg:svg></span></span>) are centrally involved in the photochemical processes taking place in the Earth's atmosphere. Measurements of <span class="inline-formula">NO<sub>2</sub></span>, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present <span class="inline-formula">NO<sub>2</sub></span> measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the <span class="inline-formula">NO<sub>2</sub></span> reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, <span class="inline-formula">NO<sub>2</sub></span> artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the <span class="inline-formula">NO<sub>2</sub></span> measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of <span class="inline-formula">NO<sub>2</sub></span> measurements in laboratory and field studies.</p> |
first_indexed | 2024-12-21T06:04:03Z |
format | Article |
id | doaj.art-edb75cd29323400aa1f7f4b736151a80 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-21T06:04:03Z |
publishDate | 2021-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-edb75cd29323400aa1f7f4b736151a802022-12-21T19:13:42ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-10-01146759677610.5194/amt-14-6759-2021Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescenceC. M. Nussbaumer0U. Parchatka1I. Tadic2B. Bohn3D. Marno4M. Martinez5R. Rohloff6H. Harder7F. Kluge8K. Pfeilsticker9F. Obersteiner10M. Zöger11R. Doerich12J. N. Crowley13J. Lelieveld14J. Lelieveld15H. Fischer16Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyInstitute of Environmental Physics, Heidelberg University, 69120 Heidelberg, GermanyInstitute of Environmental Physics, Heidelberg University, 69120 Heidelberg, GermanyKarlsruhe Institute of Technology, 76021 Karlsruhe, GermanyFlight Experiments, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyClimate and Atmosphere Research Center, The Cyprus Institute, Nicosia, CyprusMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, Germany<p>Nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>≡</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2f82bf52594ce7ed0138de6f6b27db69"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-6759-2021-ie00001.svg" width="85pt" height="13pt" src="amt-14-6759-2021-ie00001.png"/></svg:svg></span></span>) are centrally involved in the photochemical processes taking place in the Earth's atmosphere. Measurements of <span class="inline-formula">NO<sub>2</sub></span>, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present <span class="inline-formula">NO<sub>2</sub></span> measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the <span class="inline-formula">NO<sub>2</sub></span> reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, <span class="inline-formula">NO<sub>2</sub></span> artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the <span class="inline-formula">NO<sub>2</sub></span> measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of <span class="inline-formula">NO<sub>2</sub></span> measurements in laboratory and field studies.</p>https://amt.copernicus.org/articles/14/6759/2021/amt-14-6759-2021.pdf |
spellingShingle | C. M. Nussbaumer U. Parchatka I. Tadic B. Bohn D. Marno M. Martinez R. Rohloff H. Harder F. Kluge K. Pfeilsticker F. Obersteiner M. Zöger R. Doerich J. N. Crowley J. Lelieveld J. Lelieveld H. Fischer Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence Atmospheric Measurement Techniques |
title | Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence |
title_full | Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence |
title_fullStr | Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence |
title_full_unstemmed | Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence |
title_short | Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence |
title_sort | modification of a conventional photolytic converter for improving aircraft measurements of no sub 2 sub via chemiluminescence |
url | https://amt.copernicus.org/articles/14/6759/2021/amt-14-6759-2021.pdf |
work_keys_str_mv | AT cmnussbaumer modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT uparchatka modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT itadic modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT bbohn modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT dmarno modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT mmartinez modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT rrohloff modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT hharder modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT fkluge modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT kpfeilsticker modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT fobersteiner modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT mzoger modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT rdoerich modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT jncrowley modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT jlelieveld modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT jlelieveld modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence AT hfischer modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence |