Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence

<p>Nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><m...

Full description

Bibliographic Details
Main Authors: C. M. Nussbaumer, U. Parchatka, I. Tadic, B. Bohn, D. Marno, M. Martinez, R. Rohloff, H. Harder, F. Kluge, K. Pfeilsticker, F. Obersteiner, M. Zöger, R. Doerich, J. N. Crowley, J. Lelieveld, H. Fischer
Format: Article
Language:English
Published: Copernicus Publications 2021-10-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/6759/2021/amt-14-6759-2021.pdf
_version_ 1819028796433498112
author C. M. Nussbaumer
U. Parchatka
I. Tadic
B. Bohn
D. Marno
M. Martinez
R. Rohloff
H. Harder
F. Kluge
K. Pfeilsticker
F. Obersteiner
M. Zöger
R. Doerich
J. N. Crowley
J. Lelieveld
J. Lelieveld
H. Fischer
author_facet C. M. Nussbaumer
U. Parchatka
I. Tadic
B. Bohn
D. Marno
M. Martinez
R. Rohloff
H. Harder
F. Kluge
K. Pfeilsticker
F. Obersteiner
M. Zöger
R. Doerich
J. N. Crowley
J. Lelieveld
J. Lelieveld
H. Fischer
author_sort C. M. Nussbaumer
collection DOAJ
description <p>Nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>≡</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2f82bf52594ce7ed0138de6f6b27db69"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-6759-2021-ie00001.svg" width="85pt" height="13pt" src="amt-14-6759-2021-ie00001.png"/></svg:svg></span></span>) are centrally involved in the photochemical processes taking place in the Earth's atmosphere. Measurements of <span class="inline-formula">NO<sub>2</sub></span>, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present <span class="inline-formula">NO<sub>2</sub></span> measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the <span class="inline-formula">NO<sub>2</sub></span> reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, <span class="inline-formula">NO<sub>2</sub></span> artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the <span class="inline-formula">NO<sub>2</sub></span> measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of <span class="inline-formula">NO<sub>2</sub></span> measurements in laboratory and field studies.</p>
first_indexed 2024-12-21T06:04:03Z
format Article
id doaj.art-edb75cd29323400aa1f7f4b736151a80
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-21T06:04:03Z
publishDate 2021-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-edb75cd29323400aa1f7f4b736151a802022-12-21T19:13:42ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-10-01146759677610.5194/amt-14-6759-2021Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescenceC. M. Nussbaumer0U. Parchatka1I. Tadic2B. Bohn3D. Marno4M. Martinez5R. Rohloff6H. Harder7F. Kluge8K. Pfeilsticker9F. Obersteiner10M. Zöger11R. Doerich12J. N. Crowley13J. Lelieveld14J. Lelieveld15H. Fischer16Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyInstitute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyInstitute of Environmental Physics, Heidelberg University, 69120 Heidelberg, GermanyInstitute of Environmental Physics, Heidelberg University, 69120 Heidelberg, GermanyKarlsruhe Institute of Technology, 76021 Karlsruhe, GermanyFlight Experiments, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, GermanyClimate and Atmosphere Research Center, The Cyprus Institute, Nicosia, CyprusMax Planck Institute for Chemistry, Department of Atmospheric Chemistry, 55128 Mainz, Germany<p>Nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>≡</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2f82bf52594ce7ed0138de6f6b27db69"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-6759-2021-ie00001.svg" width="85pt" height="13pt" src="amt-14-6759-2021-ie00001.png"/></svg:svg></span></span>) are centrally involved in the photochemical processes taking place in the Earth's atmosphere. Measurements of <span class="inline-formula">NO<sub>2</sub></span>, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present <span class="inline-formula">NO<sub>2</sub></span> measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the <span class="inline-formula">NO<sub>2</sub></span> reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, <span class="inline-formula">NO<sub>2</sub></span> artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the <span class="inline-formula">NO<sub>2</sub></span> measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of <span class="inline-formula">NO<sub>2</sub></span> measurements in laboratory and field studies.</p>https://amt.copernicus.org/articles/14/6759/2021/amt-14-6759-2021.pdf
spellingShingle C. M. Nussbaumer
U. Parchatka
I. Tadic
B. Bohn
D. Marno
M. Martinez
R. Rohloff
H. Harder
F. Kluge
K. Pfeilsticker
F. Obersteiner
M. Zöger
R. Doerich
J. N. Crowley
J. Lelieveld
J. Lelieveld
H. Fischer
Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
Atmospheric Measurement Techniques
title Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
title_full Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
title_fullStr Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
title_full_unstemmed Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
title_short Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
title_sort modification of a conventional photolytic converter for improving aircraft measurements of no sub 2 sub via chemiluminescence
url https://amt.copernicus.org/articles/14/6759/2021/amt-14-6759-2021.pdf
work_keys_str_mv AT cmnussbaumer modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT uparchatka modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT itadic modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT bbohn modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT dmarno modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT mmartinez modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT rrohloff modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT hharder modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT fkluge modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT kpfeilsticker modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT fobersteiner modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT mzoger modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT rdoerich modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT jncrowley modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT jlelieveld modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT jlelieveld modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence
AT hfischer modificationofaconventionalphotolyticconverterforimprovingaircraftmeasurementsofnosub2subviachemiluminescence