Novel Anion Exchange Membrane Based on Poly(Pentafluorostyrene) Substituted with Mercaptotetrazole Pendant Groups and Its Blend with Polybenzimidazole for Vanadium Redox Flow Battery Applications

In order to evaluate the performance of the anion exchange membranes in a vanadium redox flow battery, a novel anion exchange polymer was synthesized via a three step process. Firstly, 1-(2-dimethylaminoethyl)-5-mercaptotetrazole was grafted onto poly(pentafluorostyrene) by nucleophilic F/S exchange...

Full description

Bibliographic Details
Main Authors: Hyeongrae Cho, Vladimir Atanasov, Henning M. Krieg, Jochen A. Kerres
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/4/915
Description
Summary:In order to evaluate the performance of the anion exchange membranes in a vanadium redox flow battery, a novel anion exchange polymer was synthesized via a three step process. Firstly, 1-(2-dimethylaminoethyl)-5-mercaptotetrazole was grafted onto poly(pentafluorostyrene) by nucleophilic F/S exchange. Secondly, the tertiary amino groups were quaternized by using iodomethane to provide anion exchange sites. Finally, the synthesized polymer was blended with polybenzimidazole to be applied in vanadium redox flow battery. The blend membranes exhibited better single cell battery performance in terms of efficiencies, open circuit voltage test and charge-discharge cycling test than that of a Nafion 212 membrane. The battery performance results of synthesized blend membranes suggest that those novel anion exchange membranes are promising candidates for vanadium redox flow batteries.
ISSN:2073-4360