A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates

In this work, a perturbed Milne’s quadrature rule for <i>n</i>-times differentiable functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi>&l...

Full description

Bibliographic Details
Main Authors: Ayman Hazaymeh, Rania Saadeh, Raed Hatamleh, Mohammad W. Alomari, Ahmad Qazza
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/9/803
_version_ 1797581339199799296
author Ayman Hazaymeh
Rania Saadeh
Raed Hatamleh
Mohammad W. Alomari
Ahmad Qazza
author_facet Ayman Hazaymeh
Rania Saadeh
Raed Hatamleh
Mohammad W. Alomari
Ahmad Qazza
author_sort Ayman Hazaymeh
collection DOAJ
description In this work, a perturbed Milne’s quadrature rule for <i>n</i>-times differentiable functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula>-error estimates is derived. One of the most important advantages of our result is that it is verified for <i>p</i>-variation and Lipschitz functions. Several error estimates involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula>-bounds are proven. These estimates are useful if the fourth derivative is unbounded in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-norm or the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula>-error estimate is less than the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-error estimate. Furthermore, since the classical Milne’s quadrature rule cannot be applied either when the fourth derivative is unbounded or does not exist, the proposed quadrature could be used alternatively. Numerical experiments showing that our proposed quadrature rule is better than the classical Milne rule for certain types of functions are also provided. The numerical experiments compare the accuracy of the proposed quadrature rule to the classical Milne rule when approximating different types of functions. The results show that, for certain types of functions, the proposed quadrature rule is more accurate than the classical Milne rule.
first_indexed 2024-03-10T23:04:03Z
format Article
id doaj.art-edce224e11dd4690aee977d510571cb0
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T23:04:03Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-edce224e11dd4690aee977d510571cb02023-11-19T09:31:57ZengMDPI AGAxioms2075-16802023-08-0112980310.3390/axioms12090803A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error EstimatesAyman Hazaymeh0Rania Saadeh1Raed Hatamleh2Mohammad W. Alomari3Ahmad Qazza4Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid P.C. 21110, JordanDepartment of Mathematics, Faculty of Science, Zarqa University, Zarga 13110, JordanDepartment of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid P.C. 21110, JordanDepartment of Mathematics, Faculty of Science and Information Technology, Irbid National University, P.O. Box 2600, Irbid P.C. 21110, JordanDepartment of Mathematics, Faculty of Science, Zarqa University, Zarga 13110, JordanIn this work, a perturbed Milne’s quadrature rule for <i>n</i>-times differentiable functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula>-error estimates is derived. One of the most important advantages of our result is that it is verified for <i>p</i>-variation and Lipschitz functions. Several error estimates involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula>-bounds are proven. These estimates are useful if the fourth derivative is unbounded in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-norm or the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula>-error estimate is less than the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-error estimate. Furthermore, since the classical Milne’s quadrature rule cannot be applied either when the fourth derivative is unbounded or does not exist, the proposed quadrature could be used alternatively. Numerical experiments showing that our proposed quadrature rule is better than the classical Milne rule for certain types of functions are also provided. The numerical experiments compare the accuracy of the proposed quadrature rule to the classical Milne rule when approximating different types of functions. The results show that, for certain types of functions, the proposed quadrature rule is more accurate than the classical Milne rule.https://www.mdpi.com/2075-1680/12/9/803Milne’s ruleSimpson’s rulequadrature ruleNewton–Cotes formulaenumerical integrationerror estimation
spellingShingle Ayman Hazaymeh
Rania Saadeh
Raed Hatamleh
Mohammad W. Alomari
Ahmad Qazza
A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates
Axioms
Milne’s rule
Simpson’s rule
quadrature rule
Newton–Cotes formulae
numerical integration
error estimation
title A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates
title_full A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates
title_fullStr A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates
title_full_unstemmed A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates
title_short A Perturbed Milne’s Quadrature Rule for <i>n</i>-Times Differentiable Functions with <i>L<sup>p</sup></i>-Error Estimates
title_sort perturbed milne s quadrature rule for i n i times differentiable functions with i l sup p sup i error estimates
topic Milne’s rule
Simpson’s rule
quadrature rule
Newton–Cotes formulae
numerical integration
error estimation
url https://www.mdpi.com/2075-1680/12/9/803
work_keys_str_mv AT aymanhazaymeh aperturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT raniasaadeh aperturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT raedhatamleh aperturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT mohammadwalomari aperturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT ahmadqazza aperturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT aymanhazaymeh perturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT raniasaadeh perturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT raedhatamleh perturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT mohammadwalomari perturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates
AT ahmadqazza perturbedmilnesquadratureruleforinitimesdifferentiablefunctionswithilsuppsupierrorestimates