A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images

Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to es...

Full description

Bibliographic Details
Main Authors: Peter Ardhianto, Raden Bagus Reinaldy Subiakto, Chih-Yang Lin, Yih-Kuen Jan, Ben-Yi Liau, Jen-Yung Tsai, Veit Babak Hamun Akbari, Chi-Wen Lung
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/7/2786
_version_ 1797437678421016576
author Peter Ardhianto
Raden Bagus Reinaldy Subiakto
Chih-Yang Lin
Yih-Kuen Jan
Ben-Yi Liau
Jen-Yung Tsai
Veit Babak Hamun Akbari
Chi-Wen Lung
author_facet Peter Ardhianto
Raden Bagus Reinaldy Subiakto
Chih-Yang Lin
Yih-Kuen Jan
Ben-Yi Liau
Jen-Yung Tsai
Veit Babak Hamun Akbari
Chi-Wen Lung
author_sort Peter Ardhianto
collection DOAJ
description Foot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to establish a precision model for determining the FPA. The precision detection of FPA can provide information with in-toeing, out-toeing, and rearfoot kinematics to evaluate the effect of physical therapy programs on knee pain and knee osteoarthritis. We analyzed a total of 1424 plantar images with three different You Only Look Once (YOLO) networks: YOLO v3, v4, and v5x, to obtain a suitable model for FPA detection. YOLOv4 showed higher performance of the profile-box, with average precision in the left foot of 100.00% and the right foot of 99.78%, respectively. Besides, in detecting the foot angle-box, the ground-truth has similar results with YOLOv4 (5.58 ± 0.10° vs. 5.86 ± 0.09°, <i>p</i> = 0.013). In contrast, there was a significant difference in FPA between ground-truth vs. YOLOv3 (5.58 ± 0.10° vs. 6.07 ± 0.06°, <i>p</i> < 0.001), and ground-truth vs. YOLOv5x (5.58 ± 0.10° vs. 6.75 ± 0.06°, <i>p</i> < 0.001). This result implies that deep learning with YOLOv4 can enhance the detection of FPA.
first_indexed 2024-03-09T11:24:53Z
format Article
id doaj.art-edd673736d7843f08b8c302478ac95f7
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T11:24:53Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-edd673736d7843f08b8c302478ac95f72023-12-01T00:05:38ZengMDPI AGSensors1424-82202022-04-01227278610.3390/s22072786A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure ImagesPeter Ardhianto0Raden Bagus Reinaldy Subiakto1Chih-Yang Lin2Yih-Kuen Jan3Ben-Yi Liau4Jen-Yung Tsai5Veit Babak Hamun Akbari6Chi-Wen Lung7Department of Visual Communication Design, Soegijapranata Catholic University, Semarang 50234, IndonesiaDepartment of Mathematics, Airlangga University, Surabaya 60115, IndonesiaDepartment of Electrical Engineering, Yuan Ze University, Chung-Li 32003, TaiwanRehabilitation Engineering Lab, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USADepartment of Biomedical Engineering, Hungkuang University, Taichung 433304, TaiwanDepartment of Digital Media Design, Asia University, Taichung 413305, TaiwanDepartment of Creative Product Design, Asia University, Taichung 413305, TaiwanRehabilitation Engineering Lab, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USAFoot progression angle (FPA) analysis is one of the core methods to detect gait pathologies as basic information to prevent foot injury from excessive in-toeing and out-toeing. Deep learning-based object detection can assist in measuring the FPA through plantar pressure images. This study aims to establish a precision model for determining the FPA. The precision detection of FPA can provide information with in-toeing, out-toeing, and rearfoot kinematics to evaluate the effect of physical therapy programs on knee pain and knee osteoarthritis. We analyzed a total of 1424 plantar images with three different You Only Look Once (YOLO) networks: YOLO v3, v4, and v5x, to obtain a suitable model for FPA detection. YOLOv4 showed higher performance of the profile-box, with average precision in the left foot of 100.00% and the right foot of 99.78%, respectively. Besides, in detecting the foot angle-box, the ground-truth has similar results with YOLOv4 (5.58 ± 0.10° vs. 5.86 ± 0.09°, <i>p</i> = 0.013). In contrast, there was a significant difference in FPA between ground-truth vs. YOLOv3 (5.58 ± 0.10° vs. 6.07 ± 0.06°, <i>p</i> < 0.001), and ground-truth vs. YOLOv5x (5.58 ± 0.10° vs. 6.75 ± 0.06°, <i>p</i> < 0.001). This result implies that deep learning with YOLOv4 can enhance the detection of FPA.https://www.mdpi.com/1424-8220/22/7/2786YOLOobject detectionfoot problemsangle parameterfoot clinic
spellingShingle Peter Ardhianto
Raden Bagus Reinaldy Subiakto
Chih-Yang Lin
Yih-Kuen Jan
Ben-Yi Liau
Jen-Yung Tsai
Veit Babak Hamun Akbari
Chi-Wen Lung
A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
Sensors
YOLO
object detection
foot problems
angle parameter
foot clinic
title A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
title_full A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
title_fullStr A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
title_full_unstemmed A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
title_short A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images
title_sort deep learning method for foot progression angle detection in plantar pressure images
topic YOLO
object detection
foot problems
angle parameter
foot clinic
url https://www.mdpi.com/1424-8220/22/7/2786
work_keys_str_mv AT peterardhianto adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT radenbagusreinaldysubiakto adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT chihyanglin adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT yihkuenjan adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT benyiliau adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT jenyungtsai adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT veitbabakhamunakbari adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT chiwenlung adeeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT peterardhianto deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT radenbagusreinaldysubiakto deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT chihyanglin deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT yihkuenjan deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT benyiliau deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT jenyungtsai deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT veitbabakhamunakbari deeplearningmethodforfootprogressionangledetectioninplantarpressureimages
AT chiwenlung deeplearningmethodforfootprogressionangledetectioninplantarpressureimages