Deep Learning-Based Image Denoising Approach for the Identification of Structured Light Modes in Dusty Weather

Structured light is gaining importance in free-space communication. Classifying spatially-structured light modes is challenging in a dusty environment because of the distortion on the propagating beams. This article addresses this challenge by proposing a deep learning convolutional autoencoder algo...

Full description

Bibliographic Details
Main Authors: Ahmed B. Ibrahim, Amr M. Ragheb, Ahmed S. Almaiman, Abderrahmen Trichili, Waddah S. Saif, Saleh A. Alshebeili
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10223284/
Description
Summary:Structured light is gaining importance in free-space communication. Classifying spatially-structured light modes is challenging in a dusty environment because of the distortion on the propagating beams. This article addresses this challenge by proposing a deep learning convolutional autoencoder algorithm for modes denoising followed by a neural network for modes classification. The input to the classifier was set to be either the denoised image or the latent code of the convolutional autoencoder. This code is a low-dimensional representation of the inputted images. The proposed machine learning (ML) models were trained and tested using laboratory-generated mode data sets from the Laguerre and Hermite Gaussian mode bases. The results show that the two proposed approaches achieve an average classification accuracy exceeding 98%, and both are better than the classification accuracy reported recently (83–91%) in the literature.
ISSN:1943-0655