Phase-field system with two temperatures and a nonlinear coupling term

The subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem,...

Full description

Bibliographic Details
Main Author: Brice Landry Doumbé Bangola
Format: Article
Language:English
Published: AIMS Press 2018-06-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/10.3934/Math.2018.2.298/fulltext.html
_version_ 1819079947431444480
author Brice Landry Doumbé Bangola
author_facet Brice Landry Doumbé Bangola
author_sort Brice Landry Doumbé Bangola
collection DOAJ
description The subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem, in terms of bounded absorbing sets. We end by analyzing the spatial behavior of solutions in asemi-infinite cylinder, assuming the existence of such solutions.
first_indexed 2024-12-21T19:37:05Z
format Article
id doaj.art-edf200917e21447eb321208943b04efb
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-21T19:37:05Z
publishDate 2018-06-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-edf200917e21447eb321208943b04efb2022-12-21T18:52:34ZengAIMS PressAIMS Mathematics2473-69882018-06-013229831510.3934/Math.2018.2.298Phase-field system with two temperatures and a nonlinear coupling termBrice Landry Doumbé Bangola0Université des Sciences et Techniques de Masuku (USTM), Unité de Recherche en Mathématiques et Informatique (URMI), BP 943 Franceville, GabonThe subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem, in terms of bounded absorbing sets. We end by analyzing the spatial behavior of solutions in asemi-infinite cylinder, assuming the existence of such solutions.http://www.aimspress.com/article/10.3934/Math.2018.2.298/fulltext.htmlCaginalp phase-field system| two temperatures| well-posedness| disspativity| spatialbahavior| Phragmén-Lindelöf alternative
spellingShingle Brice Landry Doumbé Bangola
Phase-field system with two temperatures and a nonlinear coupling term
AIMS Mathematics
Caginalp phase-field system| two temperatures| well-posedness| disspativity| spatialbahavior| Phragmén-Lindelöf alternative
title Phase-field system with two temperatures and a nonlinear coupling term
title_full Phase-field system with two temperatures and a nonlinear coupling term
title_fullStr Phase-field system with two temperatures and a nonlinear coupling term
title_full_unstemmed Phase-field system with two temperatures and a nonlinear coupling term
title_short Phase-field system with two temperatures and a nonlinear coupling term
title_sort phase field system with two temperatures and a nonlinear coupling term
topic Caginalp phase-field system| two temperatures| well-posedness| disspativity| spatialbahavior| Phragmén-Lindelöf alternative
url http://www.aimspress.com/article/10.3934/Math.2018.2.298/fulltext.html
work_keys_str_mv AT bricelandrydoumbebangola phasefieldsystemwithtwotemperaturesandanonlinearcouplingterm