Phase-field system with two temperatures and a nonlinear coupling term
The subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2018-06-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/10.3934/Math.2018.2.298/fulltext.html |
_version_ | 1819079947431444480 |
---|---|
author | Brice Landry Doumbé Bangola |
author_facet | Brice Landry Doumbé Bangola |
author_sort | Brice Landry Doumbé Bangola |
collection | DOAJ |
description | The subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem, in terms of bounded absorbing sets. We end by analyzing the spatial behavior of solutions in asemi-infinite cylinder, assuming the existence of such solutions. |
first_indexed | 2024-12-21T19:37:05Z |
format | Article |
id | doaj.art-edf200917e21447eb321208943b04efb |
institution | Directory Open Access Journal |
issn | 2473-6988 |
language | English |
last_indexed | 2024-12-21T19:37:05Z |
publishDate | 2018-06-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj.art-edf200917e21447eb321208943b04efb2022-12-21T18:52:34ZengAIMS PressAIMS Mathematics2473-69882018-06-013229831510.3934/Math.2018.2.298Phase-field system with two temperatures and a nonlinear coupling termBrice Landry Doumbé Bangola0Université des Sciences et Techniques de Masuku (USTM), Unité de Recherche en Mathématiques et Informatique (URMI), BP 943 Franceville, GabonThe subject of this paper is the qualitative study of a generalization of Caginalp phase-fieldsystem involving two temperatures and a nonlinear coupling. First, we prove the well-posedness ofthe corresponding initial and boundary value problem, and we study the dissipativity properties of thesystem, in terms of bounded absorbing sets. We end by analyzing the spatial behavior of solutions in asemi-infinite cylinder, assuming the existence of such solutions.http://www.aimspress.com/article/10.3934/Math.2018.2.298/fulltext.htmlCaginalp phase-field system| two temperatures| well-posedness| disspativity| spatialbahavior| Phragmén-Lindelöf alternative |
spellingShingle | Brice Landry Doumbé Bangola Phase-field system with two temperatures and a nonlinear coupling term AIMS Mathematics Caginalp phase-field system| two temperatures| well-posedness| disspativity| spatialbahavior| Phragmén-Lindelöf alternative |
title | Phase-field system with two temperatures and a nonlinear coupling term |
title_full | Phase-field system with two temperatures and a nonlinear coupling term |
title_fullStr | Phase-field system with two temperatures and a nonlinear coupling term |
title_full_unstemmed | Phase-field system with two temperatures and a nonlinear coupling term |
title_short | Phase-field system with two temperatures and a nonlinear coupling term |
title_sort | phase field system with two temperatures and a nonlinear coupling term |
topic | Caginalp phase-field system| two temperatures| well-posedness| disspativity| spatialbahavior| Phragmén-Lindelöf alternative |
url | http://www.aimspress.com/article/10.3934/Math.2018.2.298/fulltext.html |
work_keys_str_mv | AT bricelandrydoumbebangola phasefieldsystemwithtwotemperaturesandanonlinearcouplingterm |