Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks

The slowdown of Moore’s law and the existence of the “von Neumann bottleneck” has led to electronic-based computing systems under von Neumann’s architecture being unable to meet the fast-growing demand for artificial intelligence computing. However, all-optical diffractive neural networks provide a...

Full description

Bibliographic Details
Main Authors: Huayi Sheng, Muhammad Shemyal Nisar
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/15/1/50
_version_ 1797342967660281856
author Huayi Sheng
Muhammad Shemyal Nisar
author_facet Huayi Sheng
Muhammad Shemyal Nisar
author_sort Huayi Sheng
collection DOAJ
description The slowdown of Moore’s law and the existence of the “von Neumann bottleneck” has led to electronic-based computing systems under von Neumann’s architecture being unable to meet the fast-growing demand for artificial intelligence computing. However, all-optical diffractive neural networks provide a possible solution to this challenge. They can outperform conventional silicon-based electronic neural networks due to the significantly higher speed of the propagation of optical signals (≈<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>8</mn></msup></semantics></math></inline-formula> m.s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) compared to electrical signals (≈<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>5</mn></msup></semantics></math></inline-formula> m.s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>), their parallelism in nature, and their low power consumption. The integrated diffractive deep neural network (ID<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>NN) uses an on-chip fully passive photonic approach to achieve the functionality of neural networks (matrix–vector operations) and can be fabricated via the CMOS process, which is technologically more amenable to implementing an artificial intelligence processor. In this paper, we present a detailed design framework for the integrated diffractive deep neural network and corresponding silicon-on-insulator integration implementation through Python-based simulations. The performance of our proposed ID<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>NN was evaluated by solving image classification problems using the MNIST dataset.
first_indexed 2024-03-08T10:40:52Z
format Article
id doaj.art-edfd33affa3344a69089d0955ca50971
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-08T10:40:52Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-edfd33affa3344a69089d0955ca509712024-01-26T17:43:27ZengMDPI AGMicromachines2072-666X2023-12-011515010.3390/mi15010050Simulating an Integrated Photonic Image Classifier for Diffractive Neural NetworksHuayi Sheng0Muhammad Shemyal Nisar1Sino-British College, University of Shanghai for Science and Technology, Shanghai 200093, ChinaSino-British College, University of Shanghai for Science and Technology, Shanghai 200093, ChinaThe slowdown of Moore’s law and the existence of the “von Neumann bottleneck” has led to electronic-based computing systems under von Neumann’s architecture being unable to meet the fast-growing demand for artificial intelligence computing. However, all-optical diffractive neural networks provide a possible solution to this challenge. They can outperform conventional silicon-based electronic neural networks due to the significantly higher speed of the propagation of optical signals (≈<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>8</mn></msup></semantics></math></inline-formula> m.s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>) compared to electrical signals (≈<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>5</mn></msup></semantics></math></inline-formula> m.s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>), their parallelism in nature, and their low power consumption. The integrated diffractive deep neural network (ID<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>NN) uses an on-chip fully passive photonic approach to achieve the functionality of neural networks (matrix–vector operations) and can be fabricated via the CMOS process, which is technologically more amenable to implementing an artificial intelligence processor. In this paper, we present a detailed design framework for the integrated diffractive deep neural network and corresponding silicon-on-insulator integration implementation through Python-based simulations. The performance of our proposed ID<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>NN was evaluated by solving image classification problems using the MNIST dataset.https://www.mdpi.com/2072-666X/15/1/50integrated photonicscomputing metasurfacesdiffractive neural networksphotonic image classifier
spellingShingle Huayi Sheng
Muhammad Shemyal Nisar
Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks
Micromachines
integrated photonics
computing metasurfaces
diffractive neural networks
photonic image classifier
title Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks
title_full Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks
title_fullStr Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks
title_full_unstemmed Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks
title_short Simulating an Integrated Photonic Image Classifier for Diffractive Neural Networks
title_sort simulating an integrated photonic image classifier for diffractive neural networks
topic integrated photonics
computing metasurfaces
diffractive neural networks
photonic image classifier
url https://www.mdpi.com/2072-666X/15/1/50
work_keys_str_mv AT huayisheng simulatinganintegratedphotonicimageclassifierfordiffractiveneuralnetworks
AT muhammadshemyalnisar simulatinganintegratedphotonicimageclassifierfordiffractiveneuralnetworks