Summary: | All-solid-state batteries have emerged as promising alternatives to conventional Li-ion batteries owing to their higher energy density and safety, which stem from their use of inorganic solid-state electrolytes instead of flammable organic liquid electrolytes. Among various candidates, sulfide solid-state electrolytes are particularly promising for the development of high-energy all-solid-state Li metal batteries because of their high ionic conductivity and deformability. However, a significant challenge remains as their inherent instability in contact with electrodes forms unstable interfaces and interphases, leading to degradation of the battery performance. In this review article, we provide an overview of the key issues for the interfaces and interphases of sulfide solid-state electrolyte systems as well as recent progress in understanding such interface and interphase formation and potential solutions to stabilize them. In addition, we provide perspectives on future research directions in this field.
|