Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system

<p>Dynamic flow-through chambers are frequently used to measure gas exchange rates between the atmosphere and biosphere on the Earth's surface such as vegetation and soils. Here, we explore the performance of a dynamic chamber system in determining the uptake coefficient <span class=&q...

Full description

Bibliographic Details
Main Authors: G. Li, H. Su, M. Li, U. Kuhn, G. Zheng, L. Han, F. Bao, U. Pöschl, Y. Cheng
Format: Article
Language:English
Published: Copernicus Publications 2022-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/15/6433/2022/amt-15-6433-2022.pdf
_version_ 1797984931523067904
author G. Li
H. Su
M. Li
M. Li
M. Li
U. Kuhn
G. Zheng
L. Han
L. Han
F. Bao
U. Pöschl
Y. Cheng
author_facet G. Li
H. Su
M. Li
M. Li
M. Li
U. Kuhn
G. Zheng
L. Han
L. Han
F. Bao
U. Pöschl
Y. Cheng
author_sort G. Li
collection DOAJ
description <p>Dynamic flow-through chambers are frequently used to measure gas exchange rates between the atmosphere and biosphere on the Earth's surface such as vegetation and soils. Here, we explore the performance of a dynamic chamber system in determining the uptake coefficient <span class="inline-formula"><i>γ</i></span> of exemplary gases (O<span class="inline-formula"><sub>3</sub></span> and SO<span class="inline-formula"><sub>2</sub></span>) on bulk solid-phase samples. After characterization of the dynamic chamber system, the derived <span class="inline-formula"><i>γ</i></span> is compared with that determined from a coated-wall flow tube system. Our results show that the dynamic chamber system and the flow tube method show a good agreement for <span class="inline-formula"><i>γ</i></span>in the range of 10<span class="inline-formula"><sup>−8</sup></span> to 10<span class="inline-formula"><sup>−3</sup></span>. The dynamic chamber technique can be used for liquid samples and real atmospheric aerosol samples without complicated coating procedures, which complements the existing techniques in atmospheric kinetic studies.</p>
first_indexed 2024-04-11T07:10:38Z
format Article
id doaj.art-ee02f4a5ba324dc4b17d6901867042d7
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-04-11T07:10:38Z
publishDate 2022-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-ee02f4a5ba324dc4b17d6901867042d72022-12-22T04:38:14ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-11-01156433644610.5194/amt-15-6433-2022Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber systemG. Li0H. Su1M. Li2M. Li3M. Li4U. Kuhn5G. Zheng6L. Han7L. Han8F. Bao9U. Pöschl10Y. Cheng11Max Planck Institute for Chemistry, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, Germanynow at: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USAnow at: NOAA Chemical Sciences Laboratory, Boulder, CO, USAMax Planck Institute for Chemistry, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, Germanynow at: Department of Health and Environmental Sciences, Xi'an Jiaotong–Liverpool University, Suzhou, ChinaMax Planck Institute for Chemistry, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, Germany<p>Dynamic flow-through chambers are frequently used to measure gas exchange rates between the atmosphere and biosphere on the Earth's surface such as vegetation and soils. Here, we explore the performance of a dynamic chamber system in determining the uptake coefficient <span class="inline-formula"><i>γ</i></span> of exemplary gases (O<span class="inline-formula"><sub>3</sub></span> and SO<span class="inline-formula"><sub>2</sub></span>) on bulk solid-phase samples. After characterization of the dynamic chamber system, the derived <span class="inline-formula"><i>γ</i></span> is compared with that determined from a coated-wall flow tube system. Our results show that the dynamic chamber system and the flow tube method show a good agreement for <span class="inline-formula"><i>γ</i></span>in the range of 10<span class="inline-formula"><sup>−8</sup></span> to 10<span class="inline-formula"><sup>−3</sup></span>. The dynamic chamber technique can be used for liquid samples and real atmospheric aerosol samples without complicated coating procedures, which complements the existing techniques in atmospheric kinetic studies.</p>https://amt.copernicus.org/articles/15/6433/2022/amt-15-6433-2022.pdf
spellingShingle G. Li
H. Su
M. Li
M. Li
M. Li
U. Kuhn
G. Zheng
L. Han
L. Han
F. Bao
U. Pöschl
Y. Cheng
Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
Atmospheric Measurement Techniques
title Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
title_full Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
title_fullStr Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
title_full_unstemmed Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
title_short Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
title_sort reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
url https://amt.copernicus.org/articles/15/6433/2022/amt-15-6433-2022.pdf
work_keys_str_mv AT gli reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT hsu reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT mli reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT mli reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT mli reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT ukuhn reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT gzheng reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT lhan reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT lhan reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT fbao reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT uposchl reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem
AT ycheng reactiveuptakecoefficientsformultiphasereactionsdeterminedbyadynamicchambersystem