Automorphisms and derivations in prime rings
Let R be a non-commutative ring, I a non-zero two-sided ideal of R and f a mapping on R such that f([x, y])−[x, y] is zero or invertible for every x, y ∈ I. If R is a prime ring and f a non-trivial automorphism or a non-zero derivation on R then either R = D or R = M_2(D), the ring of all 2 × 2 matr...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
1999-01-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(3)/393-404.pdf |
_version_ | 1811250383454994432 |
---|---|
author | Vincenzo De Filippis |
author_facet | Vincenzo De Filippis |
author_sort | Vincenzo De Filippis |
collection | DOAJ |
description | Let R be a non-commutative ring, I a non-zero two-sided ideal of R and f a mapping on R such that f([x, y])−[x, y] is zero or invertible for every x, y ∈ I. If R is a prime ring and f a non-trivial automorphism or a non-zero derivation on R then either R = D or R = M_2(D), the ring of all 2 × 2 matrices over D, where D is a division ring. Moreover we will examine the case when R is a semiprime ring and f a non-zero derivation of R. |
first_indexed | 2024-04-12T16:02:56Z |
format | Article |
id | doaj.art-ee13f9f3c5f541f7adc176135ef0598c |
institution | Directory Open Access Journal |
issn | 1120-7183 2532-3350 |
language | English |
last_indexed | 2024-04-12T16:02:56Z |
publishDate | 1999-01-01 |
publisher | Sapienza Università Editrice |
record_format | Article |
series | Rendiconti di Matematica e delle Sue Applicazioni |
spelling | doaj.art-ee13f9f3c5f541f7adc176135ef0598c2022-12-22T03:26:09ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501999-01-01193393404Automorphisms and derivations in prime ringsVincenzo De Filippis0Università di MessinaLet R be a non-commutative ring, I a non-zero two-sided ideal of R and f a mapping on R such that f([x, y])−[x, y] is zero or invertible for every x, y ∈ I. If R is a prime ring and f a non-trivial automorphism or a non-zero derivation on R then either R = D or R = M_2(D), the ring of all 2 × 2 matrices over D, where D is a division ring. Moreover we will examine the case when R is a semiprime ring and f a non-zero derivation of R.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(3)/393-404.pdfprime and semiprime ringsderivationsdifferential identities |
spellingShingle | Vincenzo De Filippis Automorphisms and derivations in prime rings Rendiconti di Matematica e delle Sue Applicazioni prime and semiprime rings derivations differential identities |
title | Automorphisms and derivations in prime rings |
title_full | Automorphisms and derivations in prime rings |
title_fullStr | Automorphisms and derivations in prime rings |
title_full_unstemmed | Automorphisms and derivations in prime rings |
title_short | Automorphisms and derivations in prime rings |
title_sort | automorphisms and derivations in prime rings |
topic | prime and semiprime rings derivations differential identities |
url | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(3)/393-404.pdf |
work_keys_str_mv | AT vincenzodefilippis automorphismsandderivationsinprimerings |