Investigation Concerning the Excitation Loss of Synchronous Generators in a Stand-Alone Ship Power Plant

The protection systems of ship generators enable them to eliminate potential failures that pose a significant threat to the safety of the crew and the use of the ship. However, due to the fact that marine classification societies do not require the protection of generators against the loss of excita...

Full description

Bibliographic Details
Main Authors: Dariusz Tarnapowicz, Sergey German-Galkin, Marek Staude
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/10/2828
Description
Summary:The protection systems of ship generators enable them to eliminate potential failures that pose a significant threat to the safety of the crew and the use of the ship. However, due to the fact that marine classification societies do not require the protection of generators against the loss of excitation, such protection is only used sporadically. This article presents an LOE (loss of excitation) analysis of ship generators that operate in parallel. This analysis is supported by simulations and experimental research. The test results show that the positions of the operating points of each generator are interrelated, and changes in the excitation of one (damaged) generator cause automatic changes in the excitation, as well as changes in electromagnetic and energy processes, in the second (efficient) generator. An LOE in one generator causes a dangerous increase in armature currents in both generators. The results of this study prove that the lack of LOE protection at lower levels of excitement in one of the generators causes (by activating the required protection) the efficient generator to be switched off first. The main conclusion of this article is that the introduction of the use of security measures against LOE should be obligatory and legally required.
ISSN:1996-1073