Noncontinuous solutions to degenerate parabolic inequalities

We consider the initial value problem for degenerate parabolic equations. We prove theorems on differential inequalities and comparison theorems in unbounded domain. As a solution of differential inequality we consider upper absolutely (lower absolutely) continuous in t function (we admit disco...

Full description

Bibliographic Details
Main Author: Krzysztof A. Topolski
Format: Article
Language:English
Published: Texas State University 2015-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/113/abstr.html
Description
Summary:We consider the initial value problem for degenerate parabolic equations. We prove theorems on differential inequalities and comparison theorems in unbounded domain. As a solution of differential inequality we consider upper absolutely (lower absolutely) continuous in t function (we admit discontinuity in time variable). In the last section we compare our notion of subsolutions to the notion of viscosity subsolutions smooth in space variable. By giving a counterexample we show that upper absolutcontinuity plays crucial role in the equivalence of the two notions.
ISSN:1072-6691