Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization

Using seismic data, logging information, geological interpretation data, and petrophysical data, it is possible to estimate the stratigraphic texture and elastic parameters of a study area via a seismic inversion. As such, a seismic inversion is an indispensable tool in the field of oil and gas expl...

Full description

Bibliographic Details
Main Authors: Wenliang Nie, Fei Xiang, Bo Li, Xiaotao Wen, Xiangfei Nie
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/24/12015
_version_ 1797506742468214784
author Wenliang Nie
Fei Xiang
Bo Li
Xiaotao Wen
Xiangfei Nie
author_facet Wenliang Nie
Fei Xiang
Bo Li
Xiaotao Wen
Xiangfei Nie
author_sort Wenliang Nie
collection DOAJ
description Using seismic data, logging information, geological interpretation data, and petrophysical data, it is possible to estimate the stratigraphic texture and elastic parameters of a study area via a seismic inversion. As such, a seismic inversion is an indispensable tool in the field of oil and gas exploration and development. However, due to unknown natural factors, seismic inversions are often ill-conditioned problems. One way to work around this unknowable information is to determine the solution to the seismic inversion using regularization methods after adding further a priori constraints. In this study, the nonconvex L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> regularization method is innovatively applied to the three-parameter prestack amplitude variation angle (AVA) inversion. A forward model is first derived based on the Fatti approximate formula and then low-frequency models for P impedance, S impedance, and density are established using logging and horizon data. In the Bayesian inversion framework, we derive the objective function of the prestack AVA inversion. To further improve the accuracy and stability of the inversion results, we remove the correlations between the elastic parameters that act as initial constraints in the inversion. Then, the objective function is solved by the nonconvex L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> regularization method. Finally, we validate our inversion method by applying it to synthetic and observational data sets. The results show that our nonconvex L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> regularization seismic inversion method yields results that are highly accurate, laterally continuous, and can be used to identify and locate reservoir formation boundaries. Overall, our method will be a useful tool in future work focused on predicting the location of reservoirs.
first_indexed 2024-03-10T04:37:08Z
format Article
id doaj.art-ee25d8008f4647e78d6db060c7f57ea7
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T04:37:08Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-ee25d8008f4647e78d6db060c7f57ea72023-11-23T03:42:04ZengMDPI AGApplied Sciences2076-34172021-12-0111241201510.3390/app112412015Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> RegularizationWenliang Nie0Fei Xiang1Bo Li2Xiaotao Wen3Xiangfei Nie4School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404000, ChinaSchool of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404000, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, ChinaSchool of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404000, ChinaUsing seismic data, logging information, geological interpretation data, and petrophysical data, it is possible to estimate the stratigraphic texture and elastic parameters of a study area via a seismic inversion. As such, a seismic inversion is an indispensable tool in the field of oil and gas exploration and development. However, due to unknown natural factors, seismic inversions are often ill-conditioned problems. One way to work around this unknowable information is to determine the solution to the seismic inversion using regularization methods after adding further a priori constraints. In this study, the nonconvex L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> regularization method is innovatively applied to the three-parameter prestack amplitude variation angle (AVA) inversion. A forward model is first derived based on the Fatti approximate formula and then low-frequency models for P impedance, S impedance, and density are established using logging and horizon data. In the Bayesian inversion framework, we derive the objective function of the prestack AVA inversion. To further improve the accuracy and stability of the inversion results, we remove the correlations between the elastic parameters that act as initial constraints in the inversion. Then, the objective function is solved by the nonconvex L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> regularization method. Finally, we validate our inversion method by applying it to synthetic and observational data sets. The results show that our nonconvex L<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> regularization seismic inversion method yields results that are highly accurate, laterally continuous, and can be used to identify and locate reservoir formation boundaries. Overall, our method will be a useful tool in future work focused on predicting the location of reservoirs.https://www.mdpi.com/2076-3417/11/24/12015seismic inversionAVA inversionBayesian inversionnonconvex L<sub>1-2</sub> regularization
spellingShingle Wenliang Nie
Fei Xiang
Bo Li
Xiaotao Wen
Xiangfei Nie
Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization
Applied Sciences
seismic inversion
AVA inversion
Bayesian inversion
nonconvex L<sub>1-2</sub> regularization
title Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization
title_full Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization
title_fullStr Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization
title_full_unstemmed Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization
title_short Prestack Seismic Inversion via Nonconvex L<sub>1-2</sub> Regularization
title_sort prestack seismic inversion via nonconvex l sub 1 2 sub regularization
topic seismic inversion
AVA inversion
Bayesian inversion
nonconvex L<sub>1-2</sub> regularization
url https://www.mdpi.com/2076-3417/11/24/12015
work_keys_str_mv AT wenliangnie prestackseismicinversionvianonconvexlsub12subregularization
AT feixiang prestackseismicinversionvianonconvexlsub12subregularization
AT boli prestackseismicinversionvianonconvexlsub12subregularization
AT xiaotaowen prestackseismicinversionvianonconvexlsub12subregularization
AT xiangfeinie prestackseismicinversionvianonconvexlsub12subregularization