Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle

Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (<inline-formula><math xm...

Full description

Bibliographic Details
Main Authors: Ruibo Wang, Yanlin Ge, Lingen Chen, Huijun Feng, Zhixiang Wu
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/4/425
_version_ 1797539068868820992
author Ruibo Wang
Yanlin Ge
Lingen Chen
Huijun Feng
Zhixiang Wu
author_facet Ruibo Wang
Yanlin Ge
Lingen Chen
Huijun Feng
Zhixiang Wu
author_sort Ruibo Wang
collection DOAJ
description Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula>) of two heat exchangers, the maximum powers (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>), the maximum thermal efficiencies (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>), and the corresponding optimal heat conductance distribution ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>) and (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>-</mo><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>-</mo><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> are parabolic-like ones. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula> is given, with the increase in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula> increase. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> is given, with the increase in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> increase, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula> decrease.
first_indexed 2024-03-10T12:41:06Z
format Article
id doaj.art-ee36b82378d14069a3428137595b1edb
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T12:41:06Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-ee36b82378d14069a3428137595b1edb2023-11-21T13:56:44ZengMDPI AGEntropy1099-43002021-04-0123442510.3390/e23040425Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir CycleRuibo Wang0Yanlin Ge1Lingen Chen2Huijun Feng3Zhixiang Wu4Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaUsing finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula>) of two heat exchangers, the maximum powers (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>), the maximum thermal efficiencies (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>), and the corresponding optimal heat conductance distribution ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>) and (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>-</mo><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>-</mo><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> are parabolic-like ones. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula> is given, with the increase in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula> increase. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> is given, with the increase in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> increase, while <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula> decrease.https://www.mdpi.com/1099-4300/23/4/425finite time thermodynamicsirreversible Lenoir cyclecycle powerthermal efficiencyheat conductance distributionperformance optimization
spellingShingle Ruibo Wang
Yanlin Ge
Lingen Chen
Huijun Feng
Zhixiang Wu
Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
Entropy
finite time thermodynamics
irreversible Lenoir cycle
cycle power
thermal efficiency
heat conductance distribution
performance optimization
title Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
title_full Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
title_fullStr Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
title_full_unstemmed Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
title_short Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle
title_sort power and thermal efficiency optimization of an irreversible steady flow lenoir cycle
topic finite time thermodynamics
irreversible Lenoir cycle
cycle power
thermal efficiency
heat conductance distribution
performance optimization
url https://www.mdpi.com/1099-4300/23/4/425
work_keys_str_mv AT ruibowang powerandthermalefficiencyoptimizationofanirreversiblesteadyflowlenoircycle
AT yanlinge powerandthermalefficiencyoptimizationofanirreversiblesteadyflowlenoircycle
AT lingenchen powerandthermalefficiencyoptimizationofanirreversiblesteadyflowlenoircycle
AT huijunfeng powerandthermalefficiencyoptimizationofanirreversiblesteadyflowlenoircycle
AT zhixiangwu powerandthermalefficiencyoptimizationofanirreversiblesteadyflowlenoircycle