Islands and Page curves in 4d from Type IIB

Abstract Variants of the black hole information paradox are studied in Type IIB string theory setups that realize four-dimensional gravity coupled to a bath. The setups are string theory versions of doubly-holographic Karch/Randall brane worlds, with black holes coupled to non-gravitating and gravit...

Full description

Bibliographic Details
Main Author: Christoph F. Uhlemann
Format: Article
Language:English
Published: SpringerOpen 2021-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP08(2021)104
Description
Summary:Abstract Variants of the black hole information paradox are studied in Type IIB string theory setups that realize four-dimensional gravity coupled to a bath. The setups are string theory versions of doubly-holographic Karch/Randall brane worlds, with black holes coupled to non-gravitating and gravitating baths. The 10d versions are based on fully backreacted solutions for configurations of D3, D5 and NS5 branes, and admit dual descriptions as N $$ \mathcal{N} $$ = 4 SYM on a half space and 3d T ρ σ $$ {T}_{\rho}^{\sigma } $$ [SU(N)] SCFTs. Island contributions to the entanglement entropy of black hole radiation systems are identified through Ryu/Takayanagi surfaces and lead to Page curves. Analogs of the critical angles found in the Karch/Randall models are identified in 10d, as critical parameters in the brane configurations and dual field theories.
ISSN:1029-8479