THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV
A method of increasing the reliability of determining the zone of short-circuit at the current step protection of the lines of 6–35 kV with unilateral power, aimed at improvement of their technical perfection, is presented in the paper. Having taken the relative simpleness of the current protection...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Belarusian National Technical University
2018-01-01
|
Series: | Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika |
Subjects: | |
Online Access: | https://energy.bntu.by/jour/article/view/1140 |
_version_ | 1797879778818129920 |
---|---|
author | F. А. Romaniuk E. V. Buloichyk O. A. Huryanchyk V. S. Kachenya |
author_facet | F. А. Romaniuk E. V. Buloichyk O. A. Huryanchyk V. S. Kachenya |
author_sort | F. А. Romaniuk |
collection | DOAJ |
description | A method of increasing the reliability of determining the zone of short-circuit at the current step protection of the lines of 6–35 kV with unilateral power, aimed at improvement of their technical perfection, is presented in the paper. Having taken the relative simpleness of the current protection into account the authors consider the unilateral remote method of accounting the parameters of the emergency mode and the type of fault to be the most suitable for the implementation of the algorithm of its functioning as compared with the existing methods of fault location. The major factors affecting the accuracy of determining the short circuit zone based on the remote method are noted. With the use of the method of computational experiment the influence of the load currents and contact resistances of various levels on the magnitude and character of changes of errors of determination of the calculated distance of the point of fault from the protection installation location taking into account the errors of measuring transformers. It is demonstrated that in many cases of arc short circuit in a loaded line in order to define the zone of short-circuit with fair accuracy correction of the estimated distance to the fault as calculated by the parameters of the damaged loop (loops) is required. According to the results of numerical experiments corrective expressions on the basis of two relative asymmetry currents determined by the current values of the differences of the phase currents of the line for detecting a type of a short circuit have been obtained. The assessment of the efficiency of the proposed method has been performed. It is shown that the application of the proposed correction method makes it possible to increase the accuracy of fault zone detection. The dynamic properties of the proposed method applied to different modes of the line functioning have been studied. It is determined that in the worst case the definition of the fault zone for a maximum duration of 26 μsec is provided. |
first_indexed | 2024-04-10T02:53:43Z |
format | Article |
id | doaj.art-ee4e5159c38e4d2c9d3b366f9e0b6f39 |
institution | Directory Open Access Journal |
issn | 1029-7448 2414-0341 |
language | Russian |
last_indexed | 2024-04-10T02:53:43Z |
publishDate | 2018-01-01 |
publisher | Belarusian National Technical University |
record_format | Article |
series | Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika |
spelling | doaj.art-ee4e5159c38e4d2c9d3b366f9e0b6f392023-03-13T07:41:50ZrusBelarusian National Technical UniversityIzvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika1029-74482414-03412018-01-0161151410.21122/1029-7448-2018-61-1-5-141099THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kVF. А. Romaniuk0E. V. Buloichyk1O. A. Huryanchyk2V. S. Kachenya3Белорусский национальный технический университетБелорусский национальный технический университетБелорусский национальный технический университетБелорусский национальный технический университетA method of increasing the reliability of determining the zone of short-circuit at the current step protection of the lines of 6–35 kV with unilateral power, aimed at improvement of their technical perfection, is presented in the paper. Having taken the relative simpleness of the current protection into account the authors consider the unilateral remote method of accounting the parameters of the emergency mode and the type of fault to be the most suitable for the implementation of the algorithm of its functioning as compared with the existing methods of fault location. The major factors affecting the accuracy of determining the short circuit zone based on the remote method are noted. With the use of the method of computational experiment the influence of the load currents and contact resistances of various levels on the magnitude and character of changes of errors of determination of the calculated distance of the point of fault from the protection installation location taking into account the errors of measuring transformers. It is demonstrated that in many cases of arc short circuit in a loaded line in order to define the zone of short-circuit with fair accuracy correction of the estimated distance to the fault as calculated by the parameters of the damaged loop (loops) is required. According to the results of numerical experiments corrective expressions on the basis of two relative asymmetry currents determined by the current values of the differences of the phase currents of the line for detecting a type of a short circuit have been obtained. The assessment of the efficiency of the proposed method has been performed. It is shown that the application of the proposed correction method makes it possible to increase the accuracy of fault zone detection. The dynamic properties of the proposed method applied to different modes of the line functioning have been studied. It is determined that in the worst case the definition of the fault zone for a maximum duration of 26 μsec is provided.https://energy.bntu.by/jour/article/view/1140линия электропередачитоковая защитатехническое совершенствоотносительная несимметриязона короткого замыканияпереходное сопротивлениебыстродействие |
spellingShingle | F. А. Romaniuk E. V. Buloichyk O. A. Huryanchyk V. S. Kachenya THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV Izvestiâ Vysših Učebnyh Zavedenij i Ènergetičeskih ob Edinennij SNG. Ènergetika линия электропередачи токовая защита техническое совершенство относительная несимметрия зона короткого замыкания переходное сопротивление быстродействие |
title | THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV |
title_full | THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV |
title_fullStr | THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV |
title_full_unstemmed | THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV |
title_short | THE RELIABILITY OF DETERMINING THE SHORT CIRCUIT ZONE OF THE LINES OF 6–35 kV |
title_sort | reliability of determining the short circuit zone of the lines of 6 35 kv |
topic | линия электропередачи токовая защита техническое совершенство относительная несимметрия зона короткого замыкания переходное сопротивление быстродействие |
url | https://energy.bntu.by/jour/article/view/1140 |
work_keys_str_mv | AT faromaniuk thereliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT evbuloichyk thereliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT oahuryanchyk thereliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT vskachenya thereliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT faromaniuk reliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT evbuloichyk reliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT oahuryanchyk reliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv AT vskachenya reliabilityofdeterminingtheshortcircuitzoneofthelinesof635kv |