Expression and Potential Role of microRNA-29b in Mouse Early Embryo Development
Background/Aims: MicroRNA-29b (miR29b) has been previously identified in early mouse embryos through miRNA microarray analysis. Recent research has indicated that miR29b participates in DNA methylation by regulating DNA methyltransferase 3a/3b (Dnmt3a/3b) expression. However, the expression pattern...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2015-02-01
|
Series: | Cellular Physiology and Biochemistry |
Subjects: | |
Online Access: | http://www.karger.com/Article/FullText/373942 |
Summary: | Background/Aims: MicroRNA-29b (miR29b) has been previously identified in early mouse embryos through miRNA microarray analysis. Recent research has indicated that miR29b participates in DNA methylation by regulating DNA methyltransferase 3a/3b (Dnmt3a/3b) expression. However, the expression pattern and biological function of miR29b in mouse preimplantation embryonic development remain unknown. Methods: In this study, we examined the expression patterns of miR29b and Dnmt3a/3b in mouse early embryos at different developmental stages. Subsequently, expression and localization of DNMT3A/3B protein was analyzed in mouse early embryos by immunofluorescence staining. The biological function of miR29b in mouse early embryos was analyzed by microinjection of commercially available miRNA-specific inhibitors and mimics. Results: Our data showed that Dnmt3a/3b mRNA expression is negatively regulated by miR29b in mouse early embryos. Immunofluorescence analysis revealed that DNMT3A/3B protein expression is predominantly localized within the nucleoplasm of embryos. Alterations to the activity of miR29b could change the DNA methylation levels in mouse preimplantation embryos and lead to a developmental blockade, from the morula to the blastocyst stage. Conclusion: These results indicated a role for the miR29b-Dnmt3a/3b-DNA methylation axis in mouse early embryonic development, and we provide evidence that miR29b is indispensable for mouse early embryonic development. This study contributes to a preliminary understanding of the role of miR29b during mouse embryonic development. |
---|---|
ISSN: | 1015-8987 1421-9778 |