Schrodinger-Poisson systems with singular potential and critical exponent

In this article we study the Schrodinger-Poisson system $$\displaylines{ -\Delta u +V(|x|)u+\lambda\phi u = f(u), \quad x\in\mathbb{R}^3, \cr -\Delta \phi =u^2, \quad x\in\mathbb{R}^3, }$$ where V is a singular potential with the parameter $\alpha$ and the nonlinearity f satisfies critical gro...

Full description

Bibliographic Details
Main Authors: Senli Liu, Haibo Chen, Zhaosheng Feng
Format: Article
Language:English
Published: Texas State University 2020-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2020/130/abstr.html
_version_ 1818434736795680768
author Senli Liu
Haibo Chen
Zhaosheng Feng
author_facet Senli Liu
Haibo Chen
Zhaosheng Feng
author_sort Senli Liu
collection DOAJ
description In this article we study the Schrodinger-Poisson system $$\displaylines{ -\Delta u +V(|x|)u+\lambda\phi u = f(u), \quad x\in\mathbb{R}^3, \cr -\Delta \phi =u^2, \quad x\in\mathbb{R}^3, }$$ where V is a singular potential with the parameter $\alpha$ and the nonlinearity f satisfies critical growth. By applying a generalized version of Lions-type theorem and the Nehari manifold theory, we establish the existence of the nonnegative ground state solution when $\lambda=0$. By the perturbation method, we obtain a nontrivial solution to above system when $\lambda\neq 0$.
first_indexed 2024-12-14T16:41:44Z
format Article
id doaj.art-ee5e7e084ba449feb70d9d04f4036625
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-14T16:41:44Z
publishDate 2020-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-ee5e7e084ba449feb70d9d04f40366252022-12-21T22:54:19ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912020-12-012020130,117Schrodinger-Poisson systems with singular potential and critical exponentSenli Liu0Haibo Chen1Zhaosheng Feng2 Central South Univ., Changsha, Hunan, China Central South Univ., Changsha, Hunan, China Univ. of Texas Rio Grande Valley, Edinburg, TX, USA In this article we study the Schrodinger-Poisson system $$\displaylines{ -\Delta u +V(|x|)u+\lambda\phi u = f(u), \quad x\in\mathbb{R}^3, \cr -\Delta \phi =u^2, \quad x\in\mathbb{R}^3, }$$ where V is a singular potential with the parameter $\alpha$ and the nonlinearity f satisfies critical growth. By applying a generalized version of Lions-type theorem and the Nehari manifold theory, we establish the existence of the nonnegative ground state solution when $\lambda=0$. By the perturbation method, we obtain a nontrivial solution to above system when $\lambda\neq 0$.http://ejde.math.txstate.edu/Volumes/2020/130/abstr.htmlschrodinger-poisson systemlions-type theoremsingular potentialground state solutioncritical exponent
spellingShingle Senli Liu
Haibo Chen
Zhaosheng Feng
Schrodinger-Poisson systems with singular potential and critical exponent
Electronic Journal of Differential Equations
schrodinger-poisson system
lions-type theorem
singular potential
ground state solution
critical exponent
title Schrodinger-Poisson systems with singular potential and critical exponent
title_full Schrodinger-Poisson systems with singular potential and critical exponent
title_fullStr Schrodinger-Poisson systems with singular potential and critical exponent
title_full_unstemmed Schrodinger-Poisson systems with singular potential and critical exponent
title_short Schrodinger-Poisson systems with singular potential and critical exponent
title_sort schrodinger poisson systems with singular potential and critical exponent
topic schrodinger-poisson system
lions-type theorem
singular potential
ground state solution
critical exponent
url http://ejde.math.txstate.edu/Volumes/2020/130/abstr.html
work_keys_str_mv AT senliliu schrodingerpoissonsystemswithsingularpotentialandcriticalexponent
AT haibochen schrodingerpoissonsystemswithsingularpotentialandcriticalexponent
AT zhaoshengfeng schrodingerpoissonsystemswithsingularpotentialandcriticalexponent