Low-Elevation Target DOA Estimation Based on Multi-Scattering Center Equivalent Model

In very-high-frequency (VHF) radar, the direction-of-arrival (DOA) estimation performance of low-angle targets tracking is strongly affected by the multipath phenomenon. Especially in the complex terrain conditions, the multipath echo comes from a region where the different scattering media make the...

Full description

Bibliographic Details
Main Authors: Jianjun Ma, Hongwei Liu, Hui Ma
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/15/3533
Description
Summary:In very-high-frequency (VHF) radar, the direction-of-arrival (DOA) estimation performance of low-angle targets tracking is strongly affected by the multipath phenomenon. Especially in the complex terrain conditions, the multipath echo comes from a region where the different scattering media make the multipath echo show the characteristics of multi-channel and uneven energy distribution. In this case, the received signal mismatches with the signal model, which leads to performance degradation and even failure of the traditional DOA algorithm. To deal with this problem, the authors propose a new signal model based on multiple scattering center. A multipath signal equivalent model is deduced and analyzed using multipath vector synthesis. Subsequently, the fitness function is established based on the equivalent model, and the target elevation angle is estimated by particle swarm optimization (PSO) algorithm. Simulation results and real data analysis show that the proposed model and algorithm can effectively improve the DOA estimation accuracy of low elevation target under complex terrain and less snapshot condition.
ISSN:2072-4292