Comparative Study on the Dry Sliding Friction Properties of In-Situ Micron and Submicron (Ti-V)C Reinforced Fe-Based Laser Cladding Layers

By optimising the particle size of cladding alloy powders, in situ micron and submicron (Ti-V)C reinforced Fe-based laser cladding layers were prepared and the dry sliding friction properties were comparatively studied. Results showed that there were same phases of α-Fe, γ, TiC, and TiVC<sub>2...

Full description

Bibliographic Details
Main Authors: Yunpeng Liu, Hui Zhang, Guangchun Xiao, Wei Zhao, Hui Xu
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/6/742
Description
Summary:By optimising the particle size of cladding alloy powders, in situ micron and submicron (Ti-V)C reinforced Fe-based laser cladding layers were prepared and the dry sliding friction properties were comparatively studied. Results showed that there were same phases of α-Fe, γ, TiC, and TiVC<sub>2</sub> in the two cladding layers. The average grain size of the Fe-based matrix was 3.46 μm and 3.37 μm, the microhardness was 731 HV0.2 and 736 HV0.2, and the area ratio of carbides was 11.14% and 11.02%, respectively. The dry sliding wear resistance of the cladding layer reinforced by 1.95 μm carbides was 2.76 times higher than that of the 0.49 μm carbides. The failure mechanism of the cladding layer with the micron carbides was mainly caused by plastic deformation of the cladding layer matrix, whereas that of the submicron carbides involved both the plastic deformation of the cladding layer matrix and the abrasion that was caused by the peeled carbides.
ISSN:2075-4701