Aumann Type Set-valued Lebesgue Integral and Representation Theorem

n this paper, we shall firstly illustrate why we should discuss the Aumann type set-valued Lebesgue integral of a set-valued stochastic process with respect to time t under the condition that the set-valued stochastic process takes nonempty compact subset of d -dimensional Euclidean space. After rec...

Full description

Bibliographic Details
Main Authors: Jungang Li, Shoumei Li
Format: Article
Language:English
Published: Springer 2009-03-01
Series:International Journal of Computational Intelligence Systems
Online Access:https://www.atlantis-press.com/article/1821.pdf
Description
Summary:n this paper, we shall firstly illustrate why we should discuss the Aumann type set-valued Lebesgue integral of a set-valued stochastic process with respect to time t under the condition that the set-valued stochastic process takes nonempty compact subset of d -dimensional Euclidean space. After recalling some basic results about set-valued stochastic processes, we shall secondly prove that the Aumann type set-valued Lebesgue integral of a set-valued stochastic process above is a set-valued stochastic process. Finally we shall give the representation theorem, and prove an important inequality of the Aumann type set-valued Lebesgue integrals of set-valued stochastic processes with respect to t , which are useful to study set-valued stochastic differential inclusions with applications in finance.
ISSN:1875-6883