Systems-Level Response to Point Mutations in a Core Metabolic Enzyme Modulates Genotype-Phenotype Relationship

Linking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing mutations i...

Full description

Bibliographic Details
Main Authors: Shimon Bershtein, Jeong-Mo Choi, Sanchari Bhattacharyya, Bogdan Budnik, Eugene Shakhnovich
Format: Article
Language:English
Published: Elsevier 2015-04-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124715003423
Description
Summary:Linking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing mutations in the chromosomal folA gene encoding dihydrofolate reductase (DHFR) and quantified the ensuing changes in the abundances of 2,000+ E. coli proteins in mutant strains using tandem mass tags with subsequent LC-MS/MS. mRNA abundances in the same E. coli strains were also quantified. The proteomic effects of mutations in DHFR are quantitatively linked to phenotype: the SDs of the distributions of logarithms of relative (to WT) protein abundances anticorrelate with bacterial growth rates. Proteomes hierarchically cluster first by media conditions, and within each condition, by the severity of the perturbation to DHFR function. These results highlight the importance of a systems-level layer in the genotype-phenotype relationship.
ISSN:2211-1247