Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation

Nonnegative matrix factorization (NMF) has been shown to be a strong data representation technique, with applications in text mining, pattern recognition, image processing, clustering and other fields. In this paper, we propose a hypergraph-regularized <inline-formula><math xmlns="http...

Full description

Bibliographic Details
Main Authors: Yunxia Xu, Linzhang Lu, Qilong Liu, Zhen Chen
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/13/2821
_version_ 1797591316596523008
author Yunxia Xu
Linzhang Lu
Qilong Liu
Zhen Chen
author_facet Yunxia Xu
Linzhang Lu
Qilong Liu
Zhen Chen
author_sort Yunxia Xu
collection DOAJ
description Nonnegative matrix factorization (NMF) has been shown to be a strong data representation technique, with applications in text mining, pattern recognition, image processing, clustering and other fields. In this paper, we propose a hypergraph-regularized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> smooth nonnegative matrix factorization (HGSNMF) by incorporating the hypergraph regularization term and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> smoothing constraint term into the standard NMF model. The hypergraph regularization term can capture the intrinsic geometry structure of high dimension space data more comprehensively than simple graphs, and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> smoothing constraint term may yield a smooth and more accurate solution to the optimization problem. The updating rules are given using multiplicative update techniques, and the convergence of the proposed method is theoretically investigated. The experimental results on five different data sets show that the proposed method has a better clustering effect than the related state-of-the-art methods in the vast majority of cases.
first_indexed 2024-03-11T01:35:42Z
format Article
id doaj.art-ee7e427d130a4d75994f703433a108ac
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T01:35:42Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-ee7e427d130a4d75994f703433a108ac2023-11-18T17:01:50ZengMDPI AGMathematics2227-73902023-06-011113282110.3390/math11132821Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data RepresentationYunxia Xu0Linzhang Lu1Qilong Liu2Zhen Chen3School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, ChinaSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, ChinaSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, ChinaSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, ChinaNonnegative matrix factorization (NMF) has been shown to be a strong data representation technique, with applications in text mining, pattern recognition, image processing, clustering and other fields. In this paper, we propose a hypergraph-regularized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> smooth nonnegative matrix factorization (HGSNMF) by incorporating the hypergraph regularization term and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> smoothing constraint term into the standard NMF model. The hypergraph regularization term can capture the intrinsic geometry structure of high dimension space data more comprehensively than simple graphs, and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> smoothing constraint term may yield a smooth and more accurate solution to the optimization problem. The updating rules are given using multiplicative update techniques, and the convergence of the proposed method is theoretically investigated. The experimental results on five different data sets show that the proposed method has a better clustering effect than the related state-of-the-art methods in the vast majority of cases.https://www.mdpi.com/2227-7390/11/13/2821hypergraph regularization<i>L<sub>p</sub></i> smoothnonnegative matrix factorizationdata clustering
spellingShingle Yunxia Xu
Linzhang Lu
Qilong Liu
Zhen Chen
Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation
Mathematics
hypergraph regularization
<i>L<sub>p</sub></i> smooth
nonnegative matrix factorization
data clustering
title Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation
title_full Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation
title_fullStr Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation
title_full_unstemmed Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation
title_short Hypergraph-Regularized <i>L</i><sub>p</sub> Smooth Nonnegative Matrix Factorization for Data Representation
title_sort hypergraph regularized i l i sub p sub smooth nonnegative matrix factorization for data representation
topic hypergraph regularization
<i>L<sub>p</sub></i> smooth
nonnegative matrix factorization
data clustering
url https://www.mdpi.com/2227-7390/11/13/2821
work_keys_str_mv AT yunxiaxu hypergraphregularizedilisubpsubsmoothnonnegativematrixfactorizationfordatarepresentation
AT linzhanglu hypergraphregularizedilisubpsubsmoothnonnegativematrixfactorizationfordatarepresentation
AT qilongliu hypergraphregularizedilisubpsubsmoothnonnegativematrixfactorizationfordatarepresentation
AT zhenchen hypergraphregularizedilisubpsubsmoothnonnegativematrixfactorizationfordatarepresentation