Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network

The research used an artificial neural network (ANN) to examine optimum extraction conditions and phytochemical contents of Luffa cylindrica seed oil. The oil yield was predicted using an artificial neural network. The performance of the ANN and response surface methodology models was compared. The...

Full description

Bibliographic Details
Main Authors: Udemgba Chinonso Stanley, Amarachi Anyawu Solace, Amaefule Excel Obumneme, Odoemelam Patience Ogechi, Okam Chukwu Emmanuel, Odo Godfrey Ifeanyi, Nnaemeka Nwachuckwu Chukwudi, Sandra Ijeoma Izuchukwu, Iheanacho Eberechi Clement, Ogbonna Chiemezuo Chinedu, Sunday Okechukwu, Moses Chukwuebuka Okwudifele
Format: Article
Language:English
Published: Altezoro s.r.o. (Slovak Republic) and Publishing Center "Dialog" (Ukraine) 2023-01-01
Series:Traektoriâ Nauki
Subjects:
Online Access:https://pathofscience.org/index.php/ps/article/view/2283
_version_ 1797867491534307328
author Udemgba Chinonso Stanley
Amarachi Anyawu Solace
Amaefule Excel Obumneme
Odoemelam Patience Ogechi
Okam Chukwu Emmanuel
Odo Godfrey Ifeanyi
Nnaemeka Nwachuckwu Chukwudi
Sandra Ijeoma Izuchukwu
Iheanacho Eberechi Clement
Ogbonna Chiemezuo Chinedu
Sunday Okechukwu
Moses Chukwuebuka Okwudifele
author_facet Udemgba Chinonso Stanley
Amarachi Anyawu Solace
Amaefule Excel Obumneme
Odoemelam Patience Ogechi
Okam Chukwu Emmanuel
Odo Godfrey Ifeanyi
Nnaemeka Nwachuckwu Chukwudi
Sandra Ijeoma Izuchukwu
Iheanacho Eberechi Clement
Ogbonna Chiemezuo Chinedu
Sunday Okechukwu
Moses Chukwuebuka Okwudifele
author_sort Udemgba Chinonso Stanley
collection DOAJ
description The research used an artificial neural network (ANN) to examine optimum extraction conditions and phytochemical contents of Luffa cylindrica seed oil. The oil yield was predicted using an artificial neural network. The performance of the ANN and response surface methodology models was compared. The optimum extraction yielded 7.567% oil yield, 185.676 mg/l phenol, and 45.087 mg/l terpineol at 75.57 °C extraction temperature, 5.77 h extraction time, and 10.68 g/mol n-hexane concentration, respectively. These data show that the oil output is poor but has a significant phenol and terpenoid content that may be employed in pharmaceutical sectors. The FT-IR analysis of Luffa cylindrica seed oil revealed a high level of unsaturated hydrocarbons and esters, making the oil appropriate for using in the paint industry and creating cosmetics.
first_indexed 2024-04-09T23:41:03Z
format Article
id doaj.art-ee844a4f74da442b81f7e702e4740e0c
institution Directory Open Access Journal
issn 2413-9009
language English
last_indexed 2024-04-09T23:41:03Z
publishDate 2023-01-01
publisher Altezoro s.r.o. (Slovak Republic) and Publishing Center "Dialog" (Ukraine)
record_format Article
series Traektoriâ Nauki
spelling doaj.art-ee844a4f74da442b81f7e702e4740e0c2023-03-18T18:02:41ZengAltezoro s.r.o. (Slovak Republic) and Publishing Center "Dialog" (Ukraine)Traektoriâ Nauki2413-90092023-01-01911001101010.22178/pos.89-2882Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural NetworkUdemgba Chinonso Stanley0Amarachi Anyawu Solace1Amaefule Excel Obumneme2Odoemelam Patience Ogechi3Okam Chukwu Emmanuel4Odo Godfrey Ifeanyi5Nnaemeka Nwachuckwu Chukwudi6Sandra Ijeoma Izuchukwu7Iheanacho Eberechi Clement8Ogbonna Chiemezuo Chinedu9Sunday Okechukwu10Moses Chukwuebuka Okwudifele11Michael Okpara University of AgricultureUniversité de PoitiersMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureMichael Okpara University of AgricultureThe research used an artificial neural network (ANN) to examine optimum extraction conditions and phytochemical contents of Luffa cylindrica seed oil. The oil yield was predicted using an artificial neural network. The performance of the ANN and response surface methodology models was compared. The optimum extraction yielded 7.567% oil yield, 185.676 mg/l phenol, and 45.087 mg/l terpineol at 75.57 °C extraction temperature, 5.77 h extraction time, and 10.68 g/mol n-hexane concentration, respectively. These data show that the oil output is poor but has a significant phenol and terpenoid content that may be employed in pharmaceutical sectors. The FT-IR analysis of Luffa cylindrica seed oil revealed a high level of unsaturated hydrocarbons and esters, making the oil appropriate for using in the paint industry and creating cosmetics.https://pathofscience.org/index.php/ps/article/view/2283artificial neural networksluffa cylindrica seed oilalkyd resinphytochemicals
spellingShingle Udemgba Chinonso Stanley
Amarachi Anyawu Solace
Amaefule Excel Obumneme
Odoemelam Patience Ogechi
Okam Chukwu Emmanuel
Odo Godfrey Ifeanyi
Nnaemeka Nwachuckwu Chukwudi
Sandra Ijeoma Izuchukwu
Iheanacho Eberechi Clement
Ogbonna Chiemezuo Chinedu
Sunday Okechukwu
Moses Chukwuebuka Okwudifele
Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network
Traektoriâ Nauki
artificial neural networks
luffa cylindrica seed oil
alkyd resin
phytochemicals
title Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network
title_full Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network
title_fullStr Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network
title_full_unstemmed Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network
title_short Prediction of the Phytochemical Properties of Luffa Cylindrica Seed Oil Using Artificial Neural Network
title_sort prediction of the phytochemical properties of luffa cylindrica seed oil using artificial neural network
topic artificial neural networks
luffa cylindrica seed oil
alkyd resin
phytochemicals
url https://pathofscience.org/index.php/ps/article/view/2283
work_keys_str_mv AT udemgbachinonsostanley predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT amarachianyawusolace predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT amaefuleexcelobumneme predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT odoemelampatienceogechi predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT okamchukwuemmanuel predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT odogodfreyifeanyi predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT nnaemekanwachuckwuchukwudi predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT sandraijeomaizuchukwu predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT iheanachoeberechiclement predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT ogbonnachiemezuochinedu predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT sundayokechukwu predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork
AT moseschukwuebukaokwudifele predictionofthephytochemicalpropertiesofluffacylindricaseedoilusingartificialneuralnetwork