Estimation of Feeding Composition of Industrial Process Based on Data Reconciliation

For an industrial process, the estimation of feeding composition is important for analyzing production status and making control decisions. However, random errors or even gross ones inevitably contaminate the actual measurements. Feeding composition is conventionally obtained via discrete and low-ra...

Full description

Bibliographic Details
Main Authors: Yusi Luan, Mengxuan Jiang, Zhenxiang Feng, Bei Sun
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/4/473
Description
Summary:For an industrial process, the estimation of feeding composition is important for analyzing production status and making control decisions. However, random errors or even gross ones inevitably contaminate the actual measurements. Feeding composition is conventionally obtained via discrete and low-rate artificial testing. To address these problems, a feeding composition estimation approach based on data reconciliation procedure is developed. To improve the variable accuracy, a novel robust M-estimator is first proposed. Then, an iterative robust hierarchical data reconciliation and estimation strategy is applied to estimate the feeding composition. The feasibility and effectiveness of the estimation approach are verified on a fluidized bed roaster. The proposed M-estimator showed better overall performance.
ISSN:1099-4300