Summary: | In the present investigation, response of the stiffened sandwich foam panels with closed-cell aluminum foam cores subjected to blast load is examined. The panels have the metal foam sandwiched between two steel sheets. To improve resistance of the sandwich foam panel against blast, stiffeners are provided and their dynamic response under varying blast load is studied. Blast load is applied using blast equations available in LS-DYNA which takes into account reflection of blast from surface of the sandwich foam panel. Finite element based numerical simulations for dynamic analysis are performed employing a combination of shell and solid elements for steel sheets and metal foam, respectively. Quantitative assessment of dynamic response of the sandwich foam panels is made, primarily focusing on peak central point displacement of back-sheet (opposite to explosion) of the panel. Several analyses are carried out with an objective to understand the effects of stiffener configuration, foam thickness, foam density, and standoff distance on the blast response. Results indicate that the provision of stiffeners along with metal foam considerably increases blast resistance as compared to the unstiffened panels with the metal foam.
|