The Landau-Lifshitz Equation, the NLS, and the Magnetic Rogue Wave as a By-Product of Two Colliding Regular “Positons”

In this article we present a new method for construction of exact solutions of the Landau-Lifshitz-Gilbert equation (LLG) for ferromagnetic nanowires. The method is based on the established relationship between the LLG and the nonlinear Schrödinger equation (NLS), and is aimed at resolving an old pr...

Full description

Bibliographic Details
Main Authors: Artyom V. Yurov, Valerian A. Yurov
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/10/4/82
Description
Summary:In this article we present a new method for construction of exact solutions of the Landau-Lifshitz-Gilbert equation (LLG) for ferromagnetic nanowires. The method is based on the established relationship between the LLG and the nonlinear Schrödinger equation (NLS), and is aimed at resolving an old problem: how to produce multiple-rogue wave solutions of NLS using just the Darboux-type transformations. The solutions of this type—known as P-breathers—have been proven to exist by Dubard and Matveev, but their technique heavily relied on using the solutions of yet another nonlinear equation, the Kadomtsev-Petviashvili I equation (KP-I), and its relationship with NLS. We have shown that in fact one doesn’t have to use KP-I but can instead reach the same results just with NLS solutions, but only if they are dressed via the binary Darboux transformation. In particular, our approach allows us to construct all the Dubard-Matveev P-breathers. Furthermore, the new method can lead to some completely new, previously unknown solutions. One particular solution that we have constructed describes two “positon”-like waves, colliding with each other and in the process producing a new, short-lived rogue wave. We called this unusual solution (in which a rogue wave is begotten after the impact of two solitons) the “impacton”.
ISSN:2073-8994