Automatic Spatial Audio Scene Classification in Binaural Recordings of Music

The aim of the study was to develop a method for automatic classification of the three spatial audio scenes, differing in horizontal distribution of foreground and background audio content around a listener in binaurally rendered recordings of music. For the purpose of the study, audio recordings we...

Full description

Bibliographic Details
Main Authors: Sławomir K. Zieliński, Hyunkook Lee
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/9/1724
Description
Summary:The aim of the study was to develop a method for automatic classification of the three spatial audio scenes, differing in horizontal distribution of foreground and background audio content around a listener in binaurally rendered recordings of music. For the purpose of the study, audio recordings were synthesized using thirteen sets of binaural-room-impulse-responses (BRIRs), representing room acoustics of both semi-anechoic and reverberant venues. Head movements were not considered in the study. The proposed method was assumption-free with regards to the number and characteristics of the audio sources. A least absolute shrinkage and selection operator was employed as a classifier. According to the results, it is possible to automatically identify the spatial scenes using a combination of binaural and spectro-temporal features. The method exhibits a satisfactory classification accuracy when it is trained and then tested on different stimuli but synthesized using the same BRIRs (accuracy ranging from 74% to 98%), even in highly reverberant conditions. However, the generalizability of the method needs to be further improved. This study demonstrates that in addition to the binaural cues, the Mel-frequency cepstral coefficients constitute an important carrier of spatial information, imperative for the classification of spatial audio scenes.
ISSN:2076-3417