Satellite Observations for Detecting and Forecasting Sea-Ice Conditions: A Summary of Advances Made in the SPICES Project by the EU’s Horizon 2020 Programme

The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes...

Full description

Bibliographic Details
Main Authors: Marko Mäkynen, Jari Haapala, Giuseppe Aulicino, Beena Balan-Sarojini, Magdalena Balmaseda, Alexandru Gegiuc, Fanny Girard-Ardhuin, Stefan Hendricks, Georg Heygster, Larysa Istomina, Lars Kaleschke, Juha Karvonen, Thomas Krumpen, Mikko Lensu, Michael Mayer, Flavio Parmiggiani, Robert Ricker, Eero Rinne, Amelie Schmitt, Markku Similä, Steffen Tietsche, Rasmus Tonboe, Peter Wadhams, Mai Winstrup, Hao Zuo
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/7/1214
Description
Summary:The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015–2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU’s Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services.
ISSN:2072-4292