Generation of coherent attosecond pulses from a nano-tube array illuminated by a high-power femtosecond laser

A method to generate an isolated single-cycle attosecond pulse from the interaction of a high-power femtosecond laser pulse with a nano-tube array is demonstrated using a two-dimensional relativistic particle-in-cell simulation. The radiation mechanism is relativistic nonlinear Thomson scattering fr...

Full description

Bibliographic Details
Main Authors: S Y Chung, S W Hwang, K Lee, D Kim, H J Lee
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/12/123017
Description
Summary:A method to generate an isolated single-cycle attosecond pulse from the interaction of a high-power femtosecond laser pulse with a nano-tube array is demonstrated using a two-dimensional relativistic particle-in-cell simulation. The radiation mechanism is relativistic nonlinear Thomson scattering from the electrons in a target material. Coherent radiation is emitted in the direction of specular reflection for the incident laser pulse while the electrons make a bunch size smaller than a wavelength of the laser pulse. Maintaining the coherence of the radiation from the electrons is essential to get an intense attosecond duration, which is achieved by using a nano-tube array target and a sharply increasing laser pulse. Optimal conditions for attosecond pulse generation are investigated by parameter scanning over plasma density, target thickness and laser pulse duration.
ISSN:1367-2630