Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion
Sign Language Recognition (SLR) systems are crucial bridges facilitating communication between deaf or hard-of-hearing individuals and the hearing world. Existing SLR technologies, while advancing, often grapple with challenges such as accurately capturing the dynamic and complex nature of sign lang...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/13/7/1188 |
_version_ | 1797212742627622912 |
---|---|
author | Ali Akdag Omer Kaan Baykan |
author_facet | Ali Akdag Omer Kaan Baykan |
author_sort | Ali Akdag |
collection | DOAJ |
description | Sign Language Recognition (SLR) systems are crucial bridges facilitating communication between deaf or hard-of-hearing individuals and the hearing world. Existing SLR technologies, while advancing, often grapple with challenges such as accurately capturing the dynamic and complex nature of sign language, which includes both manual and non-manual elements like facial expressions and body movements. These systems sometimes fall short in environments with different backgrounds or lighting conditions, hindering their practical applicability and robustness. This study introduces an innovative approach to isolated sign language word recognition using a novel deep learning model that combines the strengths of both residual three-dimensional (R3D) and temporally separated (R(2+1)D) convolutional blocks. The R3(2+1)D-SLR network model demonstrates a superior ability to capture the intricate spatial and temporal features crucial for accurate sign recognition. Our system combines data from the signer’s body, hands, and face, extracted using the R3(2+1)D-SLR model, and employs a Support Vector Machine (SVM) for classification. It demonstrates remarkable improvements in accuracy and robustness across various backgrounds by utilizing pose data over RGB data. With this pose-based approach, our proposed system achieved 94.52% and 98.53% test accuracy in signer-independent evaluations on the BosphorusSign22k-general and LSA64 datasets. |
first_indexed | 2024-04-24T10:47:13Z |
format | Article |
id | doaj.art-eed188a64c984e6b9e053fbd0dbc2607 |
institution | Directory Open Access Journal |
issn | 2079-9292 |
language | English |
last_indexed | 2024-04-24T10:47:13Z |
publishDate | 2024-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Electronics |
spelling | doaj.art-eed188a64c984e6b9e053fbd0dbc26072024-04-12T13:17:01ZengMDPI AGElectronics2079-92922024-03-01137118810.3390/electronics13071188Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature FusionAli Akdag0Omer Kaan Baykan1Department of Computer Engineering, Tokat Gaziosmanpaşa University, Taşlıçiftlik Campus, 60250 Tokat, TürkiyeDepartment of Computer Engineering, Konya Technical University, 42250 Konya, TürkiyeSign Language Recognition (SLR) systems are crucial bridges facilitating communication between deaf or hard-of-hearing individuals and the hearing world. Existing SLR technologies, while advancing, often grapple with challenges such as accurately capturing the dynamic and complex nature of sign language, which includes both manual and non-manual elements like facial expressions and body movements. These systems sometimes fall short in environments with different backgrounds or lighting conditions, hindering their practical applicability and robustness. This study introduces an innovative approach to isolated sign language word recognition using a novel deep learning model that combines the strengths of both residual three-dimensional (R3D) and temporally separated (R(2+1)D) convolutional blocks. The R3(2+1)D-SLR network model demonstrates a superior ability to capture the intricate spatial and temporal features crucial for accurate sign recognition. Our system combines data from the signer’s body, hands, and face, extracted using the R3(2+1)D-SLR model, and employs a Support Vector Machine (SVM) for classification. It demonstrates remarkable improvements in accuracy and robustness across various backgrounds by utilizing pose data over RGB data. With this pose-based approach, our proposed system achieved 94.52% and 98.53% test accuracy in signer-independent evaluations on the BosphorusSign22k-general and LSA64 datasets.https://www.mdpi.com/2079-9292/13/7/1188sign language recognitiondeep learningfeature fusion |
spellingShingle | Ali Akdag Omer Kaan Baykan Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion Electronics sign language recognition deep learning feature fusion |
title | Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion |
title_full | Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion |
title_fullStr | Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion |
title_full_unstemmed | Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion |
title_short | Enhancing Signer-Independent Recognition of Isolated Sign Language through Advanced Deep Learning Techniques and Feature Fusion |
title_sort | enhancing signer independent recognition of isolated sign language through advanced deep learning techniques and feature fusion |
topic | sign language recognition deep learning feature fusion |
url | https://www.mdpi.com/2079-9292/13/7/1188 |
work_keys_str_mv | AT aliakdag enhancingsignerindependentrecognitionofisolatedsignlanguagethroughadvanceddeeplearningtechniquesandfeaturefusion AT omerkaanbaykan enhancingsignerindependentrecognitionofisolatedsignlanguagethroughadvanceddeeplearningtechniquesandfeaturefusion |