High-Performance Corrosion-Resistant Polymer/Graphene Nanomaterials for Biomedical Relevance

Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene n...

Full description

Bibliographic Details
Main Authors: Ayesha Kausar, Ishaq Ahmad, Patrizia Bocchetta
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Journal of Composites Science
Subjects:
Online Access:https://www.mdpi.com/2504-477X/6/12/362
Description
Summary:Initially, pristine polymers were used to develop corrosion-resistant coatings. Later, the trend shifted to the use of polymeric nanocomposites in anti-corrosion materials. In this regard, graphene has been identified as an important corrosion-resistant nanomaterial. Consequently, polymer/graphene nanocomposites have been applied for erosion protection applications. Among polymers, conducting polymers (polyaniline, polypyrrole, polythiophene, etc.) and nonconducting polymers (epoxy, poly(methyl methacrylate), etc.) have been used as matrices for anticorrosion graphene nanocomposites. The corrosion-resistant polymer/graphene nanocomposites have found several important applications in biomedical fields such as biocompatible materials, biodegradable materials, bioimplants, tissue engineering, and drug delivery. The biomedical performance of the nanomaterials depends on the graphene dispersion and interaction with the polymers and living systems. Future research on the anti-corrosion polymer/graphene nanocomposite is desirable to perceive further advanced applications in the biomedical arenas.
ISSN:2504-477X