A Hybrid Proactive Caching System in Vehicular Networks Based on Contextual Multi-Armed Bandit Learning
Proactive edge caching has been regarded as an effective approach to satisfy user experience in mobile networks by providing seamless content transmission and reducing network delay. This is particularly useful in rapidly changing vehicular networks. This paper addresses the proactive edge caching (...
Hlavní autoři: | Qiao Wang, David Grace |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
IEEE
2023-01-01
|
Edice: | IEEE Access |
Témata: | |
On-line přístup: | https://ieeexplore.ieee.org/document/10077392/ |
Podobné jednotky
-
Proactive Edge Caching in Vehicular Networks: An Online Bandit Learning Approach
Autor: Qiao Wang, a další
Vydáno: (2022-01-01) -
Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks
Autor: Seungmin Oh, a další
Vydáno: (2022-04-01) -
Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks
Autor: Salahadin Seid Musa, a další
Vydáno: (2022-02-01) -
Design of Multi-Armed Bandit-Based Routing for in-Network Caching
Autor: Gen Tabei, a další
Vydáno: (2023-01-01) -
Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning
Autor: Loris Cannelli, a další
Vydáno: (2023-11-01)