A Hybrid Proactive Caching System in Vehicular Networks Based on Contextual Multi-Armed Bandit Learning
Proactive edge caching has been regarded as an effective approach to satisfy user experience in mobile networks by providing seamless content transmission and reducing network delay. This is particularly useful in rapidly changing vehicular networks. This paper addresses the proactive edge caching (...
Κύριοι συγγραφείς: | Qiao Wang, David Grace |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
IEEE
2023-01-01
|
Σειρά: | IEEE Access |
Θέματα: | |
Διαθέσιμο Online: | https://ieeexplore.ieee.org/document/10077392/ |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Proactive Edge Caching in Vehicular Networks: An Online Bandit Learning Approach
ανά: Qiao Wang, κ.ά.
Έκδοση: (2022-01-01) -
Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks
ανά: Seungmin Oh, κ.ά.
Έκδοση: (2022-04-01) -
Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks
ανά: Salahadin Seid Musa, κ.ά.
Έκδοση: (2022-02-01) -
Design of Multi-Armed Bandit-Based Routing for in-Network Caching
ανά: Gen Tabei, κ.ά.
Έκδοση: (2023-01-01) -
Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning
ανά: Loris Cannelli, κ.ά.
Έκδοση: (2023-11-01)