A Hybrid Proactive Caching System in Vehicular Networks Based on Contextual Multi-Armed Bandit Learning
Proactive edge caching has been regarded as an effective approach to satisfy user experience in mobile networks by providing seamless content transmission and reducing network delay. This is particularly useful in rapidly changing vehicular networks. This paper addresses the proactive edge caching (...
主要な著者: | Qiao Wang, David Grace |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
IEEE
2023-01-01
|
シリーズ: | IEEE Access |
主題: | |
オンライン・アクセス: | https://ieeexplore.ieee.org/document/10077392/ |
類似資料
-
Proactive Edge Caching in Vehicular Networks: An Online Bandit Learning Approach
著者:: Qiao Wang, 等
出版事項: (2022-01-01) -
Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks
著者:: Seungmin Oh, 等
出版事項: (2022-04-01) -
Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks
著者:: Salahadin Seid Musa, 等
出版事項: (2022-02-01) -
Design of Multi-Armed Bandit-Based Routing for in-Network Caching
著者:: Gen Tabei, 等
出版事項: (2023-01-01) -
Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning
著者:: Loris Cannelli, 等
出版事項: (2023-11-01)