A Hybrid Proactive Caching System in Vehicular Networks Based on Contextual Multi-Armed Bandit Learning
Proactive edge caching has been regarded as an effective approach to satisfy user experience in mobile networks by providing seamless content transmission and reducing network delay. This is particularly useful in rapidly changing vehicular networks. This paper addresses the proactive edge caching (...
Asıl Yazarlar: | Qiao Wang, David Grace |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
IEEE
2023-01-01
|
Seri Bilgileri: | IEEE Access |
Konular: | |
Online Erişim: | https://ieeexplore.ieee.org/document/10077392/ |
Benzer Materyaller
-
Proactive Edge Caching in Vehicular Networks: An Online Bandit Learning Approach
Yazar:: Qiao Wang, ve diğerleri
Baskı/Yayın Bilgisi: (2022-01-01) -
Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks
Yazar:: Seungmin Oh, ve diğerleri
Baskı/Yayın Bilgisi: (2022-04-01) -
Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks
Yazar:: Salahadin Seid Musa, ve diğerleri
Baskı/Yayın Bilgisi: (2022-02-01) -
Design of Multi-Armed Bandit-Based Routing for in-Network Caching
Yazar:: Gen Tabei, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning
Yazar:: Loris Cannelli, ve diğerleri
Baskı/Yayın Bilgisi: (2023-11-01)