A Hybrid Proactive Caching System in Vehicular Networks Based on Contextual Multi-Armed Bandit Learning
Proactive edge caching has been regarded as an effective approach to satisfy user experience in mobile networks by providing seamless content transmission and reducing network delay. This is particularly useful in rapidly changing vehicular networks. This paper addresses the proactive edge caching (...
Автори: | Qiao Wang, David Grace |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
IEEE
2023-01-01
|
Серія: | IEEE Access |
Предмети: | |
Онлайн доступ: | https://ieeexplore.ieee.org/document/10077392/ |
Схожі ресурси
Схожі ресурси
-
Proactive Edge Caching in Vehicular Networks: An Online Bandit Learning Approach
за авторством: Qiao Wang, та інші
Опубліковано: (2022-01-01) -
Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks
за авторством: Seungmin Oh, та інші
Опубліковано: (2022-04-01) -
Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks
за авторством: Salahadin Seid Musa, та інші
Опубліковано: (2022-02-01) -
Design of Multi-Armed Bandit-Based Routing for in-Network Caching
за авторством: Gen Tabei, та інші
Опубліковано: (2023-01-01) -
Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning
за авторством: Loris Cannelli, та інші
Опубліковано: (2023-11-01)