Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)

对MM5V3模式中16组组合区域气候模拟试验所得的结果,分区域以RBF神经网络进行集成,分析了网络结构参数的不同对集成结果的影响,最后对整个区域的温度场进行了集成.结果表明:选择合适的网络结构参数是至关重要的,神经网络的非线性集成结果均明显优于单个参数化方案和16个方案线性集成的预测结果,整个区域的温度场集成结果比MM5模拟更接近于实况场,均方根误差场也较原MM5方案明显减小.这些结果对于区域气候的集成预测以及进一步优化神经网络的性能有一定的参考意义....

Full description

Bibliographic Details
Main Authors: GAOLing-hua(高领花), SUBing-kai(苏炳凯), TANGjian-ping(汤剑平)
Format: Article
Language:zho
Published: Zhejiang University Press 2006-03-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/zjup/1008-9497.2006.33.2.223-230
_version_ 1797236314810089472
author GAOLing-hua(高领花)
SUBing-kai(苏炳凯)
TANGjian-ping(汤剑平)
author_facet GAOLing-hua(高领花)
SUBing-kai(苏炳凯)
TANGjian-ping(汤剑平)
author_sort GAOLing-hua(高领花)
collection DOAJ
description 对MM5V3模式中16组组合区域气候模拟试验所得的结果,分区域以RBF神经网络进行集成,分析了网络结构参数的不同对集成结果的影响,最后对整个区域的温度场进行了集成.结果表明:选择合适的网络结构参数是至关重要的,神经网络的非线性集成结果均明显优于单个参数化方案和16个方案线性集成的预测结果,整个区域的温度场集成结果比MM5模拟更接近于实况场,均方根误差场也较原MM5方案明显减小.这些结果对于区域气候的集成预测以及进一步优化神经网络的性能有一定的参考意义.
first_indexed 2024-04-24T17:01:53Z
format Article
id doaj.art-eef831bb32ec4b4c971700f554ba9745
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T17:01:53Z
publishDate 2006-03-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-eef831bb32ec4b4c971700f554ba97452024-03-29T01:58:23ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972006-03-01332223230zjup/1008-9497.2006.33.2.223-230Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)GAOLing-hua(高领花)0SUBing-kai(苏炳凯)1TANGjian-ping(汤剑平)2Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China(南京大学大气科学系,江苏 南京 210093)Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China(南京大学大气科学系,江苏 南京 210093)Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China(南京大学大气科学系,江苏 南京 210093)对MM5V3模式中16组组合区域气候模拟试验所得的结果,分区域以RBF神经网络进行集成,分析了网络结构参数的不同对集成结果的影响,最后对整个区域的温度场进行了集成.结果表明:选择合适的网络结构参数是至关重要的,神经网络的非线性集成结果均明显优于单个参数化方案和16个方案线性集成的预测结果,整个区域的温度场集成结果比MM5模拟更接近于实况场,均方根误差场也较原MM5方案明显减小.这些结果对于区域气候的集成预测以及进一步优化神经网络的性能有一定的参考意义.https://doi.org/zjup/1008-9497.2006.33.2.223-230神经网络集成预测网络结构参数区域集成
spellingShingle GAOLing-hua(高领花)
SUBing-kai(苏炳凯)
TANGjian-ping(汤剑平)
Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)
Zhejiang Daxue xuebao. Lixue ban
神经网络
集成预测
网络结构
参数
区域集成
title Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)
title_full Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)
title_fullStr Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)
title_full_unstemmed Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)
title_short Study of ensemble forecasting based on different meteorological numerical products by using RBF artificial neural network(RBF神经网络集成多个气象数值产品的方法研究)
title_sort study of ensemble forecasting based on different meteorological numerical products by using rbf artificial neural network rbf神经网络集成多个气象数值产品的方法研究
topic 神经网络
集成预测
网络结构
参数
区域集成
url https://doi.org/zjup/1008-9497.2006.33.2.223-230
work_keys_str_mv AT gaolinghuagāolǐnghuā studyofensembleforecastingbasedondifferentmeteorologicalnumericalproductsbyusingrbfartificialneuralnetworkrbfshénjīngwǎngluòjíchéngduōgèqìxiàngshùzhíchǎnpǐndefāngfǎyánjiū
AT subingkaisūbǐngkǎi studyofensembleforecastingbasedondifferentmeteorologicalnumericalproductsbyusingrbfartificialneuralnetworkrbfshénjīngwǎngluòjíchéngduōgèqìxiàngshùzhíchǎnpǐndefāngfǎyánjiū
AT tangjianpingtāngjiànpíng studyofensembleforecastingbasedondifferentmeteorologicalnumericalproductsbyusingrbfartificialneuralnetworkrbfshénjīngwǎngluòjíchéngduōgèqìxiàngshùzhíchǎnpǐndefāngfǎyánjiū