Generalized Chebyshev Polynomials

Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind Tn and Un. We show that they are in a ℚ-vectorial subspace En(x) of ℚ[x] of dimension n. We establish that the polynomial sequences (hkTn−k)k and (hkU...

Full description

Bibliographic Details
Main Authors: Abchiche Mourad, Belbachir Hacéne
Format: Article
Language:English
Published: University of Zielona Góra 2018-06-01
Series:Discussiones Mathematicae - General Algebra and Applications
Subjects:
Online Access:https://doi.org/10.7151/dmgaa.1278
_version_ 1827833363716636672
author Abchiche Mourad
Belbachir Hacéne
author_facet Abchiche Mourad
Belbachir Hacéne
author_sort Abchiche Mourad
collection DOAJ
description Let h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind Tn and Un. We show that they are in a ℚ-vectorial subspace En(x) of ℚ[x] of dimension n. We establish that the polynomial sequences (hkTn−k)k and (hkUn−k)k, (0 ≤ k ≤ n − 1) are two bases of En(x) for which Tn and Un admit remarkable integer coordinates.
first_indexed 2024-03-12T05:28:10Z
format Article
id doaj.art-eefc0378b14046439b96cf80fb17e824
institution Directory Open Access Journal
issn 2084-0373
language English
last_indexed 2024-03-12T05:28:10Z
publishDate 2018-06-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae - General Algebra and Applications
spelling doaj.art-eefc0378b14046439b96cf80fb17e8242023-09-03T07:11:41ZengUniversity of Zielona GóraDiscussiones Mathematicae - General Algebra and Applications2084-03732018-06-01381799010.7151/dmgaa.1278dmgaa.1278Generalized Chebyshev PolynomialsAbchiche Mourad0Belbachir Hacéne1Faculty of Mathematics USTHB, RECITS Laboratory BP 32, El Alia, 16111 Bab Ezzouar, Algiers, AlgeriaFaculty of Mathematics USTHB, RECITS Laboratory BP 32, El Alia, 16111 Bab Ezzouar, Algiers, AlgeriaLet h(x) be a non constant polynomial with rational coefficients. Our aim is to introduce the h(x)-Chebyshev polynomials of the first and second kind Tn and Un. We show that they are in a ℚ-vectorial subspace En(x) of ℚ[x] of dimension n. We establish that the polynomial sequences (hkTn−k)k and (hkUn−k)k, (0 ≤ k ≤ n − 1) are two bases of En(x) for which Tn and Un admit remarkable integer coordinates.https://doi.org/10.7151/dmgaa.1278chebyshev polynomialsinteger coordinatespolynomial bases11b8315a0311b3908a40
spellingShingle Abchiche Mourad
Belbachir Hacéne
Generalized Chebyshev Polynomials
Discussiones Mathematicae - General Algebra and Applications
chebyshev polynomials
integer coordinates
polynomial bases
11b83
15a03
11b39
08a40
title Generalized Chebyshev Polynomials
title_full Generalized Chebyshev Polynomials
title_fullStr Generalized Chebyshev Polynomials
title_full_unstemmed Generalized Chebyshev Polynomials
title_short Generalized Chebyshev Polynomials
title_sort generalized chebyshev polynomials
topic chebyshev polynomials
integer coordinates
polynomial bases
11b83
15a03
11b39
08a40
url https://doi.org/10.7151/dmgaa.1278
work_keys_str_mv AT abchichemourad generalizedchebyshevpolynomials
AT belbachirhacene generalizedchebyshevpolynomials