PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA

The proportion of kids who are of school age but are no longer enrolled or did not complete their education at a certain level is known as the dropout rate. The majority of dropouts are from vocational high schools. One of the reasons why students leave school is because the causes of dropouts are n...

Full description

Bibliographic Details
Main Authors: Sajaratud Dur, Hendra Cipta, Nurul Aprilla Rizki
Format: Article
Language:English
Published: Universitas Bina Bangsa 2023-12-01
Series:Jurnal Lebesgue
Subjects:
Online Access:https://lebesgue.lppmbinabangsa.id/index.php/home/article/view/422
_version_ 1827368574590648320
author Sajaratud Dur
Hendra Cipta
Nurul Aprilla Rizki
author_facet Sajaratud Dur
Hendra Cipta
Nurul Aprilla Rizki
author_sort Sajaratud Dur
collection DOAJ
description The proportion of kids who are of school age but are no longer enrolled or did not complete their education at a certain level is known as the dropout rate. The majority of dropouts are from vocational high schools. One of the reasons why students leave school is because the causes of dropouts are not accurately identified. This issue persists in the field of education. One issue with geographic heterogeneity is dropout. the development of geographical effects or spatial heterogeneity as a result of variations in each region's features and the connection between their distances. Geographically Weighted Regression (GWR) is one technique for analyzing spatially heterogeneous issues. The fixed kernel's weighting function and the adaptive kernel's weighting function in this research are both gaussian. The goal of this research was to choose the most appropriate model to utilize for the GWR model on the variables influencing the dropout rate for vocational high schools in North Sumatra Province. For each North Sumatra district or city, a distinct model is generated by this study. As compared to the multiple linear regression model with Ordinary Least Square (OLS) and the GWR model with fixed kernel weighting function gaussian, the GWR model with the adaptive weighting function of the gaussian kernel is the best model used to model the factors that influence the dropout rate for vocational high schools in North Sumatra Province. This is because it has the smallest AIC value of 321.7397 and the highest of 0.9756.
first_indexed 2024-03-08T09:33:24Z
format Article
id doaj.art-ef072f33f4754b0098539ad3054ff9a6
institution Directory Open Access Journal
issn 2721-8929
2721-8937
language English
last_indexed 2024-03-08T09:33:24Z
publishDate 2023-12-01
publisher Universitas Bina Bangsa
record_format Article
series Jurnal Lebesgue
spelling doaj.art-ef072f33f4754b0098539ad3054ff9a62024-01-30T17:45:32ZengUniversitas Bina BangsaJurnal Lebesgue2721-89292721-89372023-12-01431490151310.46306/lb.v4i3.422422PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARASajaratud Dur0Hendra Cipta1Nurul Aprilla Rizki2Universitas Islam Negeri Sumatera UtaraUniversitas Islam Negeri Sumatera UtaraUniversitas Islam Negeri Sumatera UtaraThe proportion of kids who are of school age but are no longer enrolled or did not complete their education at a certain level is known as the dropout rate. The majority of dropouts are from vocational high schools. One of the reasons why students leave school is because the causes of dropouts are not accurately identified. This issue persists in the field of education. One issue with geographic heterogeneity is dropout. the development of geographical effects or spatial heterogeneity as a result of variations in each region's features and the connection between their distances. Geographically Weighted Regression (GWR) is one technique for analyzing spatially heterogeneous issues. The fixed kernel's weighting function and the adaptive kernel's weighting function in this research are both gaussian. The goal of this research was to choose the most appropriate model to utilize for the GWR model on the variables influencing the dropout rate for vocational high schools in North Sumatra Province. For each North Sumatra district or city, a distinct model is generated by this study. As compared to the multiple linear regression model with Ordinary Least Square (OLS) and the GWR model with fixed kernel weighting function gaussian, the GWR model with the adaptive weighting function of the gaussian kernel is the best model used to model the factors that influence the dropout rate for vocational high schools in North Sumatra Province. This is because it has the smallest AIC value of 321.7397 and the highest of 0.9756.https://lebesgue.lppmbinabangsa.id/index.php/home/article/view/422geographically weighted regressionheterogenitas spasialsmkangka putus sekolahspatial heterogeneitydropout rate
spellingShingle Sajaratud Dur
Hendra Cipta
Nurul Aprilla Rizki
PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA
Jurnal Lebesgue
geographically weighted regression
heterogenitas spasial
smk
angka putus sekolah
spatial heterogeneity
dropout rate
title PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA
title_full PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA
title_fullStr PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA
title_full_unstemmed PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA
title_short PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI ANGKA PUTUS SEKOLAH MENENGAH KEJURUAN DI PROVINSI SUMATERA UTARA
title_sort pemodelan geographically weighted regression terhadap faktor faktor yang mempengaruhi angka putus sekolah menengah kejuruan di provinsi sumatera utara
topic geographically weighted regression
heterogenitas spasial
smk
angka putus sekolah
spatial heterogeneity
dropout rate
url https://lebesgue.lppmbinabangsa.id/index.php/home/article/view/422
work_keys_str_mv AT sajaratuddur pemodelangeographicallyweightedregressionterhadapfaktorfaktoryangmempengaruhiangkaputussekolahmenengahkejuruandiprovinsisumaterautara
AT hendracipta pemodelangeographicallyweightedregressionterhadapfaktorfaktoryangmempengaruhiangkaputussekolahmenengahkejuruandiprovinsisumaterautara
AT nurulaprillarizki pemodelangeographicallyweightedregressionterhadapfaktorfaktoryangmempengaruhiangkaputussekolahmenengahkejuruandiprovinsisumaterautara