Development and testing of the hydrogen behavior tool for Falcon – HYPE

The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended timeframes like dry storage requires anticipating hydrogen behavior using numerical mode...

Full description

Bibliographic Details
Main Authors: Piotr Konarski, Cedric Cozzo, Grigori Khvostov, Hakim Ferroukhi
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573323005119
Description
Summary:The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended timeframes like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon – HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.
ISSN:1738-5733