Phase-field modeling for electrodeposition process
A novel phase-field model for electrochemical processes, in which cations were driven by an electrostatic potential coupled with a thermodynamic potential, was formulated from a variation of the Ginzburg–Landau free-energy functional. Using this model, an electrodeposition process of copper deposits...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2007-01-01
|
Series: | Science and Technology of Advanced Materials |
Online Access: | http://www.iop.org/EJ/abstract/1468-6996/8/6/A11 |
Summary: | A novel phase-field model for electrochemical processes, in which cations were driven by an electrostatic potential coupled with a thermodynamic potential, was formulated from a variation of the Ginzburg–Landau free-energy functional. Using this model, an electrodeposition process of copper deposits from copper-sulfate solution was studied using a phase-field simulation. The dependence of the growth velocity of the electrode on the applied voltage was examined in a one-dimensional system. Then, the morphological transition of the electrodeposits as functions of the applied voltage and the composition ratio of copper ion in electrolyte was examined using a two-dimensional system. Thin and dense branches were observed at a low applied voltage. The shape of the branches became more complicated as the composition ratio was lowered. |
---|---|
ISSN: | 1468-6996 1878-5514 |