Temporal fluctuations in chemotaxis gain implement a simulated-tempering strategy for efficient navigation in complex environments

Summary: Bacterial chemotaxis is a major testing ground for systems biology, including the role of fluctuations and individual variation. Individual bacteria vary in their tumbling frequency and adaptation time. Recently, large cell-cell variation was also discovered in chemotaxis gain, which determ...

Full description

Bibliographic Details
Main Authors: Omer Karin, Uri Alon
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004221007641
Description
Summary:Summary: Bacterial chemotaxis is a major testing ground for systems biology, including the role of fluctuations and individual variation. Individual bacteria vary in their tumbling frequency and adaptation time. Recently, large cell-cell variation was also discovered in chemotaxis gain, which determines the sensitivity of the tumbling rate to attractant gradients. Variation in gain is puzzling, because low gain impairs chemotactic velocity. Here, we provide a functional explanation for gain variation by establishing a formal analogy between chemotaxis and algorithms for sampling probability distributions. We show that temporal fluctuations in gain implement simulated tempering, which allows sampling of attractant distributions with many local peaks. Periods of high gain allow bacteria to detect and climb gradients quickly, and periods of low gain allow them to move to new peaks. Gain fluctuations thus allow bacteria to thrive in complex environments, and more generally they may play an important functional role for organism navigation.
ISSN:2589-0042