The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry

For large isospin asymmetries, perturbation theory predicts the quantum chromodynamic (QCD) ground state to be a superfluid phase of <i>u</i> and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>d</mi>...

Full description

Bibliographic Details
Main Authors: Bastian B. Brandt, Francesca Cuteri, Gergely Endrodi, Sebastian Schmalzbauer
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Particles
Subjects:
Online Access:https://www.mdpi.com/2571-712X/3/1/7
_version_ 1811308784475176960
author Bastian B. Brandt
Francesca Cuteri
Gergely Endrodi
Sebastian Schmalzbauer
author_facet Bastian B. Brandt
Francesca Cuteri
Gergely Endrodi
Sebastian Schmalzbauer
author_sort Bastian B. Brandt
collection DOAJ
description For large isospin asymmetries, perturbation theory predicts the quantum chromodynamic (QCD) ground state to be a superfluid phase of <i>u</i> and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>d</mi> <mo>&#175;</mo> </mover> </semantics> </math> </inline-formula> Cooper pairs. This phase, which is denoted as the Bardeen-Cooper-Schrieffer (BCS) phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#956;</mi> <mi>I</mi> </msub> <mo>&#8805;</mo> <msub> <mi>m</mi> <mi>&#960;</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both deconfinement and charged pion condensation, comes from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential).
first_indexed 2024-04-13T09:29:30Z
format Article
id doaj.art-ef3ffc161b354ed8be9049eecfbbcf31
institution Directory Open Access Journal
issn 2571-712X
language English
last_indexed 2024-04-13T09:29:30Z
publishDate 2020-02-01
publisher MDPI AG
record_format Article
series Particles
spelling doaj.art-ef3ffc161b354ed8be9049eecfbbcf312022-12-22T02:52:19ZengMDPI AGParticles2571-712X2020-02-0131808610.3390/particles3010007particles3010007The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetryBastian B. Brandt0Francesca Cuteri1Gergely Endrodi2Sebastian Schmalzbauer3Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, GermanyInstitute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, GermanyInstitute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, GermanyInstitute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, GermanyFor large isospin asymmetries, perturbation theory predicts the quantum chromodynamic (QCD) ground state to be a superfluid phase of <i>u</i> and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>d</mi> <mo>&#175;</mo> </mover> </semantics> </math> </inline-formula> Cooper pairs. This phase, which is denoted as the Bardeen-Cooper-Schrieffer (BCS) phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#956;</mi> <mi>I</mi> </msub> <mo>&#8805;</mo> <msub> <mi>m</mi> <mi>&#960;</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both deconfinement and charged pion condensation, comes from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential).https://www.mdpi.com/2571-712X/3/1/7lattice qcdisospinbcs phase
spellingShingle Bastian B. Brandt
Francesca Cuteri
Gergely Endrodi
Sebastian Schmalzbauer
The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry
Particles
lattice qcd
isospin
bcs phase
title The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry
title_full The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry
title_fullStr The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry
title_full_unstemmed The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry
title_short The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry
title_sort dirac spectrum and the bec bcs crossover in qcd at nonzero isospin asymmetry
topic lattice qcd
isospin
bcs phase
url https://www.mdpi.com/2571-712X/3/1/7
work_keys_str_mv AT bastianbbrandt thediracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT francescacuteri thediracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT gergelyendrodi thediracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT sebastianschmalzbauer thediracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT bastianbbrandt diracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT francescacuteri diracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT gergelyendrodi diracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry
AT sebastianschmalzbauer diracspectrumandthebecbcscrossoverinqcdatnonzeroisospinasymmetry