Comparative photocatalytic degradation of monoazo and diazo dyes under simulated visible light using Fe3+/C/S doped-TiO2 nanoparticles
This research work delved into the photocatalytic degradation of monoazo dye (methyl orange) and diazo dye (congo red) in aqueous solution using Fe3+/C/S-doped TiO2 nanocomposites. The nanocomposites were synthesised through sol-gel method and characterized using XRD, FTIR, SEM, TEM, EDX, BET and UV...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Slovenian Chemical Society
2016-05-01
|
Series: | Acta Chimica Slovenica |
Subjects: | |
Online Access: | https://journals.matheo.si/index.php/ACSi/article/view/2385 |
Summary: | This research work delved into the photocatalytic degradation of monoazo dye (methyl orange) and diazo dye (congo red) in aqueous solution using Fe3+/C/S-doped TiO2 nanocomposites. The nanocomposites were synthesised through sol-gel method and characterized using XRD, FTIR, SEM, TEM, EDX, BET and UV-Vis. Photocatalytic degradation of the dyes was monitored under simulated visible light using pristine TiO2, C/S/doped-TiO2 and Fe3+/C/S doped-TiO2 with varying concentrations of Fe3+. The influence of catalyst doping, solution pH, and light intensity were also examined. Doping TiO2 with Fe3+/C/S caused reduction in its band gap value with the resultant improvement in its visible light activity. The photocatalytic efficiency of the catalysts are given as follows: TiO2 < C/S/TiO2 < Fe3+/C/S-TiO2 with Fe3+/C/S-TiO2 (0.3 % Fe3+) as the best performing photocatalyst. The monoazo dye experienced higher degradation efficiency than the diazo dye. Degradation of the azo dyes was observed to decrease with increasing pH from 3 to 12. Increased visible light intensity enhanced the photodegradation efficiency of the dye. Dye decolourization was observed to be faster than its mineralization. |
---|---|
ISSN: | 1318-0207 1580-3155 |